Display options
Share it on

Dalton Trans. 2018 Oct 30;47(42):15024-15030. doi: 10.1039/c8dt03780a.

Copper(ii) complexes for cysteine detection using .

Dalton transactions (Cambridge, England : 2003)

José S Enriquez, Meng Yu, Bailey S Bouley, Da Xie, Emily L Que

Affiliations

  1. Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, Texas 78712, USA. [email protected].

PMID: 30303220 PMCID: PMC6242275 DOI: 10.1039/c8dt03780a

Abstract

Cysteine plays an essential role in maintaining cellular redox homeostasis and perturbations in cysteine concentration are associated with cardiovascular disease, liver disease, and cancer. 19F MRI is a promising modality for detecting cysteine in biology due to its high tissue penetration and negligible biological background signal. Herein we report fluorinated macrocyclic copper complexes that display a 19F NMR/MRI turn-on response following reduction of the Cu(ii) complexes by cysteine. The reactivity with cysteine was studied by monitoring the appearance of a robust diamagnetic 19F signal following addition of cysteine in conjunction with UV-vis and EPR spectroscopies. Importantly, complexes with -CH2CF3 tags display good water solubility. Studies with this complex in HeLa cells demonstrate the applicability of these probes to detect cysteine in complex biological environments.

References

  1. J Am Chem Soc. 2007 Aug 29;129(34):10322-3 - PubMed
  2. Theranostics. 2017 Feb 26;7(4):1036-1046 - PubMed
  3. Chem Commun (Camb). 2012 Apr 7;48(28):3442-4 - PubMed
  4. Chem Soc Rev. 2010 Jun;39(6):2120-35 - PubMed
  5. Talanta. 2017 Aug 1;170:406-412 - PubMed
  6. Chem Rev. 2014 Apr 23;114(8):4496-539 - PubMed
  7. Inorg Chem. 2017 Jun 5;56(11):6429-6437 - PubMed
  8. J Am Chem Soc. 2008 Jan 23;130(3):794-5 - PubMed
  9. Biochim Biophys Acta. 1984 Sep 3;779(3):289-306 - PubMed
  10. Chem Rev. 2015 Jan 28;115(2):1106-29 - PubMed
  11. Org Biomol Chem. 2014 Aug 28;12(32):6128-33 - PubMed
  12. Inorg Chem. 2017 Nov 6;56(21):13337-13348 - PubMed
  13. Free Radic Biol Med. 2015 Mar;80:148-57 - PubMed
  14. Free Radic Biol Med. 2004 Mar 15;36(6):757-64 - PubMed
  15. Chem Sci. 2017 Dec 1;8(12):8345-8350 - PubMed
  16. Chem Commun (Camb). 2016 Dec 14;52(96):13885-13888 - PubMed
  17. J Am Chem Soc. 2012 Nov 21;134(46):18928-31 - PubMed
  18. Front Chem. 2018 May 23;6:160 - PubMed
  19. Analyst. 2009 Jul;134(7):1361-5 - PubMed
  20. J Am Chem Soc. 2016 Mar 9;138(9):2937-40 - PubMed
  21. Magn Reson Med. 2008 Nov;60(5):1066-72 - PubMed
  22. Chem Commun (Camb). 2011 Jul 7;47(25):7233-5 - PubMed
  23. J Am Chem Soc. 2018 Aug 22;140(33):10546-10552 - PubMed
  24. Sensors (Basel). 2012 Nov 19;12(11):15907-46 - PubMed
  25. J Chromatogr A. 2000 Oct 20;895(1-2):167-71 - PubMed
  26. Inorg Chem. 2010 Aug 16;49(16):7464-71 - PubMed
  27. J Am Chem Soc. 2016 Feb 17;138(6):1804-7 - PubMed
  28. ACS Appl Mater Interfaces. 2014 Mar 26;6(6):4402-7 - PubMed
  29. Inorg Chem. 2017 Feb 6;56(3):1546-1557 - PubMed
  30. Chemistry. 2010 Jul 19;16(27):8147-54 - PubMed
  31. Magn Reson Med. 2011 Oct;66(4):931-6 - PubMed
  32. Curr Opin Chem Biol. 2018 Aug;45:121-130 - PubMed
  33. Nano Lett. 2008 Feb;8(2):529-33 - PubMed
  34. FASEB J. 1999 Jul;13(10):1169-83 - PubMed
  35. Chem Rev. 2013 Jul 10;113(7):4633-79 - PubMed
  36. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7496-500 - PubMed
  37. Anal Chem. 2001 Dec 15;73(24):5972-8 - PubMed
  38. Free Radic Biol Med. 2011 Feb 15;50(4):495-509 - PubMed
  39. NMR Biomed. 2014 Mar;27(3):261-71 - PubMed
  40. Biomaterials. 2012 Jan;33(3):945-53 - PubMed
  41. Nat Mater. 2016 Jun;15(6):662-8 - PubMed
  42. Chembiochem. 2005 Sep;6(9):1536-49 - PubMed
  43. Dalton Trans. 2016 Jan 14;45(2):474-8 - PubMed
  44. Chem Rev. 2010 May 12;110(5):2858-902 - PubMed
  45. Chem Commun (Camb). 2013 Mar 11;49(20):2040-2 - PubMed
  46. J Cell Biochem. 2014 Jun;115(6):1007-22 - PubMed
  47. Chem Commun (Camb). 2008 Jun 14;(22):2514-6 - PubMed

Publication Types

Grant support