Display options
Share it on

Oncotarget. 2018 Aug 24;9(66):32593-32608. doi: 10.18632/oncotarget.25961. eCollection 2018 Aug 24.

Alendronate-induced disruption of actin cytoskeleton and inhibition of migration/invasion are associated with cofilin downregulation in PC-3 prostate cancer cells.

Oncotarget

Sanna S Virtanen, Tamiko Ishizu, Jouko A Sandholm, Eliisa Löyttyniemi, H Kalervo Väänänen, Johanna M Tuomela, Pirkko L Härkönen

Affiliations

  1. University of Turku, Institute of Biomedicine, FI-20520 Turku, Finland.
  2. Turku University of Applied Sciences, Health and Well-being, FI-20520 Turku, Finland.
  3. Cell Imaging Core, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20521 Turku, Finland.
  4. University of Turku, Department of Biostatistics, FI-20520 Turku, Finland.

PMID: 30220968 PMCID: PMC6135693 DOI: 10.18632/oncotarget.25961

Abstract

Bisphosphonates are used for prevention of osteoporosis and metastatic bone diseases. Anti-invasive effects on various cancer cells have also been reported, but the mechanisms involved are not well-understood. We investigated the effects of the nitrogen-containing bisphosphonate alendronate (ALN) on the regulation of actin cytoskeleton in PC-3 cells. We analyzed the ALN effect on the organization and the dynamics of actin, and on the cytoskeleton-related regulatory proteins cofilin, p21-associated kinase 2 (PAK2), paxillin and focal adhesion kinase. Immunostainings of cofilin in ALN-treated PC-3 cells and xenografts were performed, and the role of cofilin in ALN-regulated F-actin organization and migration/invasion in PC-3 cells was analyzed using cofilin knockdown and transfection. We demonstrate that disrupted F-actin organization and decreased cell motility in ALN-treated PC-3 cells were associated with decreased levels of total and phosphorylated cofilin. PAK2 levels were also lowered but adhesion-related proteins were not altered. The knockdown of cofilin similarly impaired F-actin organization and decreased invasion of PC-3 cells, whereas in the cells transfected with a cofilin expressing vector, ALN treatment did not decrease cellular cofilin levels and migration as in mock transfected cells. ALN also reduced immunohistochemical staining of cofilin in PC-3 xenografts. Our results suggest that reduction of cofilin has an important role in ALN-induced disruption of the actin cytoskeleton and inhibition of the PC-3 cell motility and invasion. These data also support the idea that the nitrogen-containing bisphosphonates could be efficacious in inhibition of prostate cancer invasion and metastasis, if delivered in a pharmacological formulation accessible to the tumors.

Keywords: actin cytoskeleton; bisphosphonate; cofilin; invasion; prostate cancer

Conflict of interest statement

CONFLICTS OF INTEREST There are no competing interests for any of the authors.

References

  1. Oncogene. 2015 May 21;34(21):2764-76 - PubMed
  2. Int J Pharm. 2011 Jan 17;403(1-2):292-7 - PubMed
  3. Ann Med. 1993 Aug;25(4):373-8 - PubMed
  4. Nat Rev Cancer. 2007 Jun;7(6):429-40 - PubMed
  5. Cell Biol Int. 2010 Aug;34(8):815-26 - PubMed
  6. Nanomedicine. 2011 Dec;7(6):955-64 - PubMed
  7. Cancer Res. 1997 Sep 15;57(18):3890-4 - PubMed
  8. Cancer Immunol Immunother. 2008 Oct;57(10):1451-9 - PubMed
  9. Hum Pathol. 2011 Apr;42(4):516-21 - PubMed
  10. Hum Pathol. 2016 Nov;57:68-77 - PubMed
  11. Cancer Res. 2005 Jan 15;65(2):540-5 - PubMed
  12. Cancer Res. 2001 Mar 15;61(6):2602-8 - PubMed
  13. Physiol Rev. 2004 Oct;84(4):1315-39 - PubMed
  14. Mol Pharmacol. 1999 Jul;56(1):131-40 - PubMed
  15. Methods. 2001 Dec;25(4):402-8 - PubMed
  16. Anticancer Res. 2007 Mar-Apr;27(2):927-32 - PubMed
  17. Tumori. 2017 Nov 23;103(6):537-542 - PubMed
  18. Anticancer Res. 2015 Apr;35(4):1851-9 - PubMed
  19. Trends Biochem Sci. 2000 Jan;25(1):19-23 - PubMed
  20. J Cell Sci. 2016 Sep 1;129(17):3211-8 - PubMed
  21. Mol Cell Biol. 1997 Mar;17(3):1129-43 - PubMed
  22. Eur Urol. 2013 May;63(5):927-35 - PubMed
  23. J Cell Biol. 1992 Apr;117(2):347-56 - PubMed
  24. Clin Cancer Res. 2004 Jul 1;10(13):4559-67 - PubMed
  25. Calcif Tissue Int. 1994 Nov;55(5):368-75 - PubMed
  26. Cancer Res. 2002 May 1;62(9):2708-14 - PubMed
  27. J Clin Invest. 1996 Aug 1;98(3):698-705 - PubMed
  28. BMC Cancer. 2006 Mar 15;6:60 - PubMed
  29. Nat Methods. 2012 Jul;9(7):671-5 - PubMed
  30. J Bone Miner Res. 1997 Sep;12(9):1358-67 - PubMed
  31. J Pharmacol Exp Ther. 2001 Feb;296(2):235-42 - PubMed
  32. Cancer Res. 2014 Apr 15;74(8):2362-73 - PubMed
  33. Cancer Res. 2000 Jun 1;60(11):2949-54 - PubMed
  34. Cancer Res. 2002 Nov 15;62(22):6538-44 - PubMed
  35. Anticancer Agents Med Chem. 2012 Feb;12(2):102-13 - PubMed
  36. Cancer Sci. 2017 Apr;108(4):795-803 - PubMed
  37. Nat Rev Mol Cell Biol. 2013 Jul;14(7):405-15 - PubMed
  38. Cancer Sci. 2005 Jul;96(7):379-86 - PubMed
  39. Curr Med Chem. 2008;15(12):1147-53 - PubMed
  40. Biotechnol Adv. 2012 Jan-Feb;30(1):302-9 - PubMed
  41. Clin Cancer Res. 2015 Dec 1;21(23):5209-5214 - PubMed
  42. Arch Biochem Biophys. 2000 Jan 1;373(1):231-41 - PubMed
  43. Am J Clin Exp Urol. 2014 Apr 05;2(1):15-26 - PubMed
  44. Trends Cell Biol. 2005 Feb;15(2):84-91 - PubMed
  45. Anticancer Drugs. 2008 Apr;19(4):391-9 - PubMed
  46. Mol Biol Cell. 2005 Feb;16(2):649-64 - PubMed
  47. Br J Cancer. 2003 May 19;88(10):1631-40 - PubMed
  48. Endothelium. 2007 Mar-Apr;14(2):123-30 - PubMed
  49. Oncotarget. 2015 Feb 28;6(6):3531-9 - PubMed
  50. Biomed Rep. 2015 Sep;3(5):603-610 - PubMed
  51. J Immunol. 2014 Dec 1;193(11):5557-66 - PubMed
  52. Br J Pharmacol. 2006 Feb;147(4):437-45 - PubMed
  53. Nat Cell Biol. 1999 Sep;1(5):253-9 - PubMed
  54. Oncol Rep. 2016 May;35(5):2743-54 - PubMed
  55. BMC Cancer. 2008 Mar 28;8:81 - PubMed
  56. Cancer Metastasis Rev. 2009 Jun;28(1-2):51-63 - PubMed
  57. Nat Rev Cancer. 2011 Jun;11(6):411-25 - PubMed
  58. Cell Cycle. 2015;14(12):1884-92 - PubMed
  59. J Proteome Res. 2009 Jan;8(1):35-47 - PubMed

Publication Types