Display options
Share it on

Oncoimmunology. 2018 May 21;7(8):e1463947. doi: 10.1080/2162402X.2018.1463947. eCollection 2018.

Immune effectors responsible for the elimination of hyperploid cancer cells.

Oncoimmunology

Fernando Aranda, Kariman Chaba, Norma Bloy, Pauline Garcia, Chloé Bordenave, Isabelle Martins, Gautier Stoll, Antoine Tesniere, Guido Kroemer, Laura Senovilla

Affiliations

  1. INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
  2. Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
  3. Université Pierre et Marie Curie, Paris, France.
  4. Gustave Roussy Cancer Campus, Villejuif, France.
  5. Ilumens Simulation Department, Paris Descartes University, Paris, France.
  6. Surgical Intensive Care Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
  7. Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
  8. Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.

PMID: 30221060 PMCID: PMC6136857 DOI: 10.1080/2162402X.2018.1463947

Abstract

The immune system avoids oncogenesis and slows down tumor progression through a mechanism called immunosurveillance. Nevertheless, some malignant cells manage to escape from immune control and form clinically detectable tumors. Tetraploidy, which consists in the intrinsically unstable duplication of the genome, is considered as a (pre)-cancerous event that can result in aneuploidy and contribute to oncogenesis. We previously described the fact that tetraploid cells can be eliminated by the immune system. Here, we investigate the role of different innate and acquired immune effectors by inoculating hyperploid cancer cells into wild type or mice bearing different immunodeficient genotypes (

Keywords: cancer; genomic instability; hyperploidy; immunoselection; immunosurveillance

References

  1. Nature. 2007 Dec 6;450(7171):903-7 - PubMed
  2. Nat Immunol. 2002 Nov;3(11):991-8 - PubMed
  3. Trends Immunol. 2013 Oct;34(10):471-81 - PubMed
  4. Immunopharmacol Immunotoxicol. 1994 Aug;16(3):319-46 - PubMed
  5. Proc Natl Acad Sci U S A. 1984 Feb;81(3):886-8 - PubMed
  6. Carcinogenesis. 2009 Aug;30(8):1408-15 - PubMed
  7. J Immunol. 2003 Apr 1;170(7):3528-33 - PubMed
  8. Annu Rev Cell Dev Biol. 2011;27:585-610 - PubMed
  9. Cancer Cell. 2012 Jun 12;21(6):765-76 - PubMed
  10. Immunol Rev. 2017 Nov;280(1):165-174 - PubMed
  11. Nature. 1991 Apr 4;350(6317):423-6 - PubMed
  12. Nat Rev Mol Cell Biol. 2011 Jun;12(6):385-92 - PubMed
  13. Cell. 2018 Jan 25;172(3):534-548.e19 - PubMed
  14. Oncotarget. 2015 Dec 1;6(38):41204-15 - PubMed
  15. Science. 2012 Sep 28;337(6102):1678-84 - PubMed
  16. PLoS One. 2012;7(4):e35979 - PubMed
  17. Immunity. 2013 Jul 25;39(1):74-88 - PubMed
  18. Trends Cell Biol. 2017 Dec;27(12):880-884 - PubMed
  19. Prog Exp Tumor Res. 1970;13:1-27 - PubMed
  20. FASEB J. 2009 Aug;23(8):2741-8 - PubMed
  21. Immunology. 2003 Dec;110(4):519-26 - PubMed
  22. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  23. Cell. 1992 Mar 6;68(5):855-67 - PubMed
  24. Cell Cycle. 2012 Sep 1;11(17):3157-8 - PubMed
  25. Expert Opin Investig Drugs. 2008 Mar;17(3):349-59 - PubMed
  26. J Cell Physiol. 2006 Jul;208(1):12-22 - PubMed
  27. Nature. 2005 Oct 13;437(7061):1043-7 - PubMed
  28. Blood. 2000 Jun 1;95(11):3489-97 - PubMed
  29. Immunity. 2008 Aug 15;29(2):272-82 - PubMed
  30. Science. 2017 Jan 20;355(6322): - PubMed
  31. EMBO J. 2006 Jun 7;25(11):2584-95 - PubMed
  32. Carcinogenesis. 2006 Feb;27(2):337-43 - PubMed
  33. Cell Cycle. 2013 Feb 1;12(3):473-9 - PubMed
  34. PLoS Genet. 2012;8(4):e1002679 - PubMed
  35. Cell Cycle. 2012 Sep 15;11(18):3354-5 - PubMed
  36. Oncoimmunology. 2015 Aug 12;5(2):e1074378 - PubMed
  37. Ann Oncol. 2012 Sep;23 Suppl 8:viii6-9 - PubMed

Publication Types