Display options
Share it on

ACS Omega. 2018 Jul 31;3(7):7663-7672. doi: 10.1021/acsomega.8b00785. Epub 2018 Jul 11.

Controlled Dye Aggregation in Sodium Dodecylsulfate-Stabilized Poly(methylmethacrylate) Nanoparticles as Fluorescent Imaging Probes.

ACS omega

Samarth Bhargava, Justin Jang Hann Chu, Suresh Valiyaveettil

Affiliations

  1. Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
  2. Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, 117545, Singapore.

PMID: 30221237 PMCID: PMC6130898 DOI: 10.1021/acsomega.8b00785

Abstract

Polymer nanoparticles are used extensively in biomedical applications. Poly(methylmethacrylate) (PMMA) nanoparticles obtained via nanoprecipitation were unstable and flocculate or precipitate from solution within a few hours. A simple method to improve the stability of the particles using surfactants at low concentrations was carried out to produce PMMA nanoparticles with long-term stability in water (>6 months). The increased stability was attributed to the incorporation of surfactants inside the polymer particles during nanoprecipitation. The same methodology was also adopted to encapsulate a highly fluorescent hydrophobic perylene tetraester inside the polymer nanoparticles with good stability in water. Because of the presence of the anionic sodium dodecyl sulfate, the particles showed a negative zeta potential of -34.7 mV and an average size of 150 nm. Similarly, the dye-encapsulated polymer nanoparticles showed a zeta potential of -35.1 mV and an average particle size of 180 nm. By varying the concentration of encapsulated dyes inside the polymer nanoparticles, dye aggregation could be controlled, and the fluorescence profiles of the nanoparticles were altered. To understand the uptake and toxicity of the polymer nanoparticles, baby hamster kidney cells were chosen as a model system. The polymer nanoparticles were taken up by the cells within 3 h and were nontoxic at concentrations as high as 100 ppm. The confocal micrographs of the cells revealed localized fluorescence from the polymer nanoparticles around the nucleus in the cytoplasm without the penetration of the nuclear envelope.

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Chem Soc Rev. 2013 Aug 21;42(16):6620-33 - PubMed
  2. ACS Appl Mater Interfaces. 2017 Dec 13;9(49):43030-43042 - PubMed
  3. J Phys Condens Matter. 2010 Aug 25;22(33):334217 - PubMed
  4. Biomaterials. 2012 Aug;33(22):5603-9 - PubMed
  5. Biomaterials. 2011 Apr;32(11):2969-78 - PubMed
  6. Results Pharma Sci. 2012;2:79-85 - PubMed
  7. Nanotechnology. 2014 Jan 31;25(4):045102 - PubMed
  8. J Biomed Mater Res A. 2017 May;105(5):1433-1445 - PubMed
  9. J Org Chem. 2014 Jul 18;79(14):6655-62 - PubMed
  10. Chemistry. 2008;14(36):11343-57 - PubMed
  11. J Control Release. 2002 Oct 30;83(3):389-400 - PubMed
  12. Nanoscale. 2013 Jan 7;5(1):147-50 - PubMed
  13. Toxicol In Vitro. 2004 Oct;18(5):703-10 - PubMed
  14. Langmuir. 2009 Feb 17;25(4):1970-9 - PubMed
  15. Chemistry. 2000 Nov 3;6(21):3871-86 - PubMed
  16. J Mater Sci Mater Med. 2015 Mar;26(3):150 - PubMed
  17. Nat Commun. 2014 Jun 09;5:4089 - PubMed
  18. Small. 2013 Jun 24;9(12):2129-39 - PubMed
  19. Drug Dev Ind Pharm. 1999 Apr;25(4):471-6 - PubMed
  20. Macromol Rapid Commun. 2012 Oct 26;33(20):1798-803 - PubMed
  21. Nanoscale. 2012 Sep 21;4(18):5581-4 - PubMed
  22. Biomaterials. 2004 Jun;25(14):2843-9 - PubMed
  23. J Nanosci Nanotechnol. 2016 Jun;16(6):5569-76 - PubMed
  24. Antimicrob Agents Chemother. 2000 Jul;44(7):1954-60 - PubMed
  25. Angew Chem Int Ed Engl. 2008;47(18):3367-71 - PubMed
  26. Nanoscale. 2015 Jul 21;7(27):11486-508 - PubMed
  27. Chem Rev. 2016 Feb 10;116(3):962-1052 - PubMed
  28. Sci Rep. 2014 Apr 10;4:4635 - PubMed
  29. Chemistry. 2012 Oct 22;18(43):13665-77 - PubMed
  30. Eur J Biochem. 2000 Sep;267(17):5421-6 - PubMed
  31. J Am Chem Soc. 2017 Feb 8;139(5):2014-2021 - PubMed
  32. Soft Matter. 2014 May 21;10(19):3414-20 - PubMed
  33. Mol Pharm. 2014 Mar 3;11(3):776-86 - PubMed
  34. ACS Nano. 2015 May 26;9(5):5104-16 - PubMed
  35. Eur J Pharm Sci. 2005 Jan;24(1):67-75 - PubMed
  36. Bioconjug Chem. 2012 May 16;23(5):981-92 - PubMed
  37. Sci Rep. 2016 Nov 08;6:35993 - PubMed

Publication Types