Display options
Share it on

Ann Clin Transl Neurol. 2018 Jul 26;5(9):1016-1024. doi: 10.1002/acn3.600. eCollection 2018 Sep.

Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma.

Annals of clinical and translational neurology

Christian Pfeiffer, Nathalie Ata Nguepnjo Nguissi, Magali Chytiris, Phanie Bidlingmeyer, Matthias Haenggi, Rebekka Kurmann, Frédéric Zubler, Ettore Accolla, Dragana Viceic, Marco Rusca, Mauro Oddo, Andrea O Rossetti, Marzia De Lucia

Affiliations

  1. Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland.
  2. Department of Intensive Care Medicine Inselspital Bern University Hospital University of Bern Bern Switzerland.
  3. Department of Neurology Inselspital Bern University Hospital University of Bern Bern Switzerland.
  4. Neurology Unit Department of Medicine Hôpital Cantonal Fribourg (HFR) Fribourg Switzerland.
  5. Laboratory for Cognitive and Neurological Sciences Department of Medicine University of Fribourg Fribourg Switzerland.
  6. Neurology Service Hôpital du Valais Sion Switzerland.
  7. Intensive Care Medicine Hôpital du Valais Sion Switzerland.
  8. Department of Intensive Care Medicine University Hospital (CHUV) & University of Lausanne Lausanne Switzerland.
  9. Neurology Service University Hospital (CHUV) & University of Lausanne Lausanne Switzerland.

PMID: 30250859 PMCID: PMC6144443 DOI: 10.1002/acn3.600

Abstract

OBJECTIVE: Prominent research in patients with disorders of consciousness investigated the electrophysiological correlates of auditory deviance detection as a marker of consciousness recovery. Here, we extend previous studies by investigating whether somatosensory deviance detection provides an added value for outcome prediction in postanoxic comatose patients.

METHODS: Electroencephalography responses to frequent and rare stimuli were obtained from 66 patients on the first and second day after coma onset.

RESULTS: Multivariate decoding analysis revealed an above chance-level auditory discrimination in 25 patients on the first day and in 31 patients on the second day. Tactile discrimination was significant in 16 patients on the first day and in 23 patients on the second day. Single-day sensory discrimination was unrelated to patients' outcome in both modalities. However, improvement of auditory discrimination from first to the second day was predictive of good outcome with a positive predictive power (PPV) of 0.73 (CI = 0.52-0.88). Analyses considering the improvement of tactile, auditory and tactile, or either auditory or tactile discrimination showed no significant prediction of good outcome (PPVs = 0.58-0.68).

INTERPRETATION: Our results show that in the acute phase of coma deviance detection is largely preserved for both auditory and tactile modalities. However, we found no evidence for an added value of somatosensory to auditory deviance detection function for coma-outcome prediction.

References

  1. J Neuroimaging. 2015 May-Jun;25(3):430-7 - PubMed
  2. Neuroimage. 2016 Feb 15;127:34-43 - PubMed
  3. Front Hum Neurosci. 2016 Jun 02;10:259 - PubMed
  4. J Cogn Neurosci. 2010 Jun;22(6):1201-11 - PubMed
  5. Hear Res. 2009 Dec;258(1-2):37-46 - PubMed
  6. Brain Topogr. 2014 Jul;27(4):467-79 - PubMed
  7. J Neurosci. 2011 Dec 7;31(49):17971-81 - PubMed
  8. Neurosci Lett. 2004 Mar 11;357(3):163-6 - PubMed
  9. J Integr Neurosci. 2014 Sep;13(3):485-95 - PubMed
  10. Resuscitation. 2017 Sep;118:89-95 - PubMed
  11. Resuscitation. 2016 Sep;106:89-95 - PubMed
  12. Resuscitation. 2018 May;126:143-146 - PubMed
  13. J Neurosci. 2011 Mar 2;31(9):3400-6 - PubMed
  14. AJNR Am J Neuroradiol. 2001 Sep;22(8):1561-5 - PubMed
  15. J Neurosci. 2016 Aug 10;36(32):8305-16 - PubMed
  16. Ann Neurol. 2009 Apr;65(4):394-402 - PubMed
  17. Neuroimage. 2012 Apr 15;60(3):1704-15 - PubMed
  18. Brain. 2015 May;138(Pt 5):1129-37 - PubMed
  19. Neurocrit Care. 2014 Oct;21(2):238-44 - PubMed
  20. Hear Res. 2011 Jan;271(1-2):88-102 - PubMed
  21. J Neurophysiol. 2009 May;101(5):2620-31 - PubMed
  22. Clin Neurophysiol. 2007 Dec;118(12):2544-90 - PubMed
  23. Brain. 2015 Dec;138(Pt 12):e395 - PubMed
  24. Int J Psychophysiol. 2012 Feb;83(2):132-43 - PubMed
  25. Exp Brain Res. 2005 Oct;166(3-4):337-44 - PubMed
  26. JAMA. 2004 Feb 18;291(7):870-9 - PubMed
  27. Front Hum Neurosci. 2014 Sep 16;8:666 - PubMed
  28. Circulation. 2013 Jan 15;127(2):244-50 - PubMed
  29. Crit Care Med. 2014 Jun;42(6):1340-7 - PubMed
  30. Exp Brain Res. 2015 Feb;233(2):617-29 - PubMed
  31. J Clin Neurophysiol. 2014 Aug;31(4):356-61 - PubMed
  32. Nat Rev Neurol. 2014 Feb;10(2):99-114 - PubMed
  33. Crit Care Med. 2017 Jul;45(7):e674-e682 - PubMed
  34. Brain. 2013 Jan;136(Pt 1):81-9 - PubMed
  35. J Stroke Cerebrovasc Dis. 2013 Oct;22(7):899-905 - PubMed
  36. J Neurosci Methods. 2015 Jul 30;250:106-13 - PubMed
  37. Dev Neuropsychol. 2012;37(6):518-44 - PubMed
  38. Crit Care. 2015 Nov 17;19:403 - PubMed
  39. Neurocrit Care. 2018 Feb;28(1):104-109 - PubMed
  40. Front Psychol. 2014 Feb 25;5:155 - PubMed
  41. Biol Psychiatry. 2008 Jan 1;63(1):58-64 - PubMed
  42. J Clin Neurophysiol. 2013 Feb;30(1):1-27 - PubMed
  43. Dev Med Child Neurol. 2009 Dec;51(12):930-1 - PubMed
  44. Brain Res Cogn Brain Res. 1998 Oct;7(2):165-71 - PubMed
  45. N Engl J Med. 2013 Dec 5;369(23):2197-206 - PubMed
  46. Neuroimage. 2012 Feb 15;59(4):3641-51 - PubMed
  47. AJNR Am J Neuroradiol. 1999 Jun-Jul;20(6):999-1007 - PubMed
  48. Ann Neurol. 2016 May;79(5):748-757 - PubMed
  49. Ann Neurol. 2010 Mar;67(3):301-7 - PubMed
  50. Brain. 2015 May;138(Pt 5):1160-6 - PubMed

Publication Types