Display options
Share it on

Front Genet. 2018 Sep 24;9:402. doi: 10.3389/fgene.2018.00402. eCollection 2018.

Ethanol-Induced Behavioral Sensitization Alters the Synaptic Transcriptome and Exon Utilization in DBA/2J Mice.

Frontiers in genetics

Megan A O'Brien, Rory M Weston, Nihar U Sheth, Steven Bradley, John Bigbee, Ashutosh Pandey, Robert W Williams, Jennifer T Wolstenholme, Michael F Miles

Affiliations

  1. Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.
  2. VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.
  3. Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
  4. Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States.
  5. Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.

PMID: 30319688 PMCID: PMC6166094 DOI: 10.3389/fgene.2018.00402

Abstract

Alcoholism is a complex behavioral disorder characterized by loss of control in limiting intake, and progressive compulsion to seek and consume ethanol. Prior studies have suggested that the characteristic behaviors associated with escalation of drug use are caused, at least in part, by ethanol-evoked changes in gene expression affecting synaptic plasticity. Implicit in this hypothesis is a dependence on new protein synthesis and remodeling at the synapse. It is well established that mRNA can be transported to distal dendritic processes, where it can undergo localized translation. It is unknown whether such modulation of the synaptic transcriptome might contribute to ethanol-induced synaptic plasticity. Using ethanol-induced behavioral sensitization as a model of neuroplasticity, we investigated whether repeated exposure to ethanol altered the synaptic transcriptome, contributing to mechanisms underlying subsequent increases in ethanol-evoked locomotor activity. RNAseq profiling of DBA/2J mice subjected to acute ethanol or ethanol-induced behavioral sensitization was performed on frontal pole synaptoneurosomes to enrich for synaptic mRNA. Genomic profiling showed distinct functional classes of mRNA enriched in the synaptic vs. cytosolic fractions, consistent with their role in synaptic function. Ethanol sensitization regulated more than twice the number of synaptic localized genes compared to acute ethanol exposure. Synaptic biological processes selectively perturbed by ethanol sensitization included protein folding and modification as well as and mitochondrial respiratory function, suggesting repeated ethanol exposure alters synaptic energy production and the processing of newly translated proteins. Additionally, marked differential exon usage followed ethanol sensitization in both synaptic and non-synaptic cellular fractions, with little to no perturbation following acute ethanol exposure. Altered synaptic exon usage following ethanol sensitization strongly affected genes related to RNA processing and stability, translational regulation, and synaptic function. These genes were also enriched for targets of the FMRP RNA-binding protein and contained consensus sequence motifs related to other known RNA binding proteins, suggesting that ethanol sensitization altered selective mRNA trafficking mechanisms. This study provides a foundation for investigating the role of ethanol in modifying the synaptic transcriptome and inducing changes in synaptic plasticity.

Keywords: RNAseq; ethanol; exon utilization; mRNA trafficking; sensitization; synaptic

References

  1. Trends Neurosci. 1992 May;15(5):180-6 - PubMed
  2. J Neurosci. 2006 Dec 20;26(51):13390-9 - PubMed
  3. Neuron. 1995 Feb;14(2):433-45 - PubMed
  4. Appl Environ Microbiol. 2005 Jul;71(7):3866-71 - PubMed
  5. Nat Commun. 2016 Sep 26;7:12867 - PubMed
  6. Nature. 1997 Feb 6;385(6616):533-6 - PubMed
  7. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  8. Eur J Neurosci. 2006 Dec;24(12):3496-506 - PubMed
  9. J Neurosci. 1988 Jan;8(1):176-84 - PubMed
  10. Annu Rev Neurosci. 2001;24:299-325 - PubMed
  11. Drug Alcohol Depend. 1998 Jun-Jul;51(1-2):141-53 - PubMed
  12. Genome Biol. 2013 Apr 25;14(4):R36 - PubMed
  13. PLoS One. 2012;7(4):e33575 - PubMed
  14. Alcohol Clin Exp Res. 2013 Jan;37(1):57-66 - PubMed
  15. PLoS One. 2012;7(2):e32446 - PubMed
  16. Brain Res. 2007 Feb 23;1134(1):148-61 - PubMed
  17. Am J Addict. 2001 Summer;10(3):201-17 - PubMed
  18. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W305-11 - PubMed
  19. Cell. 2011 Jul 22;146(2):247-61 - PubMed
  20. Neurosci Res. 2007 Mar;57(3):411-23 - PubMed
  21. J Neurosci. 2006 Aug 9;26(32):8339-51 - PubMed
  22. Pharmacol Biochem Behav. 1990 Dec;37(4):707-11 - PubMed
  23. Genome Res. 2012 Oct;22(10):2008-17 - PubMed
  24. Brain Res Brain Res Rev. 1991 Sep-Dec;16(3):223-44 - PubMed
  25. Neuron. 1994 Dec;13(6):1463-74 - PubMed
  26. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  27. J Biol Chem. 1991 Feb 5;266(4):2409-14 - PubMed
  28. Mol Pharmacol. 2007 Jul;72(1):95-102 - PubMed
  29. Neuron. 2001 Apr;30(1):227-40 - PubMed
  30. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 - PubMed
  31. J Neurochem. 1993 Sep;61(3):835-44 - PubMed
  32. Neuron. 2012 May 10;74(3):453-66 - PubMed
  33. Pharmacol Biochem Behav. 1981 Dec;15(6):925-32 - PubMed
  34. J Pharmacol Exp Ther. 1975 Jan;192(1):64-7 - PubMed
  35. Neuron. 1993 Dec;11(6):995-1006 - PubMed
  36. J Neurosci. 1997 Dec 15;17(24):9492-505 - PubMed
  37. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5734-8 - PubMed
  38. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  39. Pharmacogenomics J. 2015 Apr;15(2):177-88 - PubMed
  40. Psychopharmacology (Berl). 2001 Apr;155(1):91-9 - PubMed
  41. J Neurosci. 1998 Jan 1;18(1):26-35 - PubMed
  42. Nucleic Acids Res. 2012 May;40(10):4288-97 - PubMed
  43. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6 - PubMed
  44. PLoS One. 2009;4(3):e4936 - PubMed
  45. Database (Oxford). 2016 Apr 07;2016: - PubMed
  46. Brain Res. 1990 Apr 23;514(1):22-6 - PubMed
  47. Nat Rev Neurosci. 2007 Oct;8(10):776-89 - PubMed
  48. Mol Pharmacol. 1994 Nov;46(5):873-9 - PubMed
  49. Nat Protoc. 2009;4(8):1184-91 - PubMed
  50. Cell. 1999 Oct 15;99(2):221-37 - PubMed
  51. Pharmacol Biochem Behav. 1986 May;24(5):1225-8 - PubMed
  52. Nucleic Acids Res. 2011 Jan;39(Database issue):D301-8 - PubMed
  53. Neuron. 1998 Oct;21(4):741-51 - PubMed
  54. J Neurosci. 1982 Mar;2(3):284-91 - PubMed
  55. Pharmacol Biochem Behav. 2004 Dec;79(4):623-32 - PubMed
  56. J Neurosci. 1993 Sep;13(9):4054-63 - PubMed
  57. EMBO J. 2011 Aug 31;30(17):3540-52 - PubMed
  58. J Neurosci. 2005 Mar 2;25(9):2255-66 - PubMed
  59. Nat Rev Neurosci. 2002 Oct;3(10):813-20 - PubMed
  60. Psychopharmacology (Berl). 2000 Aug;151(2-3):99-120 - PubMed
  61. Alcohol Clin Exp Res. 2016 Jun;40(6):1251-61 - PubMed
  62. Science. 1996 Sep 6;273(5280):1402-6 - PubMed
  63. Cell. 2002 Mar 8;108(5):689-703 - PubMed
  64. Genome Biol. 2007;8(2):R24 - PubMed
  65. Neuron. 2004 Sep 30;44(1):59-73 - PubMed
  66. PLoS One. 2013 Aug 22;8(8):e72979 - PubMed
  67. Brain Res Brain Res Rev. 1993 Sep-Dec;18(3):247-91 - PubMed
  68. Annu Rev Med. 1998;49:173-84 - PubMed
  69. PLoS One. 2011;6(7):e21800 - PubMed
  70. Behav Neurosci. 1994 Aug;108(4):789-803 - PubMed
  71. J Physiol. 2018 Jul;596(14):2773-2782 - PubMed
  72. J Neurosci. 1990 Jun;10(6):1788-98 - PubMed
  73. Nat Commun. 2016 Feb 02;7:10464 - PubMed

Publication Types

Grant support