Display options
Share it on

Sci Adv. 2018 Oct 19;4(10):eaau4295. doi: 10.1126/sciadv.aau4295. eCollection 2018 Oct.

Full-field imaging of thermal and acoustic dynamics in an individual nanostructure using tabletop high harmonic beams.

Science advances

Robert M Karl, Giulia F Mancini, Joshua L Knobloch, Travis D Frazer, Jorge N Hernandez-Charpak, Begoña Abad, Dennis F Gardner, Elisabeth R Shanblatt, Michael Tanksalvala, Christina L Porter, Charles S Bevis, Daniel E Adams, Henry C Kapteyn, Margaret M Murnane

Affiliations

  1. JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440, USA.

PMID: 30345364 PMCID: PMC6195334 DOI: 10.1126/sciadv.aau4295

Abstract

Imaging charge, spin, and energy flow in materials is a current grand challenge that is relevant to a host of nanoenhanced systems, including thermoelectric, photovoltaic, electronic, and spin devices. Ultrafast coherent x-ray sources enable functional imaging on nanometer length and femtosecond timescales particularly when combined with advances in coherent imaging techniques. Here, we combine ptychographic coherent diffractive imaging with an extreme ultraviolet high harmonic light source to directly visualize the complex thermal and acoustic response of an individual nanoscale antenna after impulsive heating by a femtosecond laser. We directly image the deformations induced in both the nickel tapered nanoantenna and the silicon substrate and see the lowest-order generalized Lamb wave that is partially confined to a uniform nanoantenna. The resolution achieved-sub-100 nm transverse and 0.5-Å axial spatial resolution, combined with ≈10-fs temporal resolution-represents a significant advance in full-field dynamic imaging capabilities. The tapered nanoantenna is sufficiently complex that a full simulation of the dynamic response would require enormous computational power. We therefore use our data to benchmark approximate models and achieve excellent agreement between theory and experiment. In the future, this work will enable three-dimensional functional imaging of opaque materials and nanostructures that are sufficiently complex that their functional properties cannot be predicted.

References

  1. Nat Mater. 2010 Jan;9(1):26-30 - PubMed
  2. Science. 2009 Jul 10;325(5937):181-4 - PubMed
  3. Nano Lett. 2016 Sep 14;16(9):5444-50 - PubMed
  4. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7444-8 - PubMed
  5. Nat Mater. 2017 Oct 25;16(11):1049-1052 - PubMed
  6. Opt Express. 2014 May 19;22(10):12634-44 - PubMed
  7. Ultramicroscopy. 2009 Mar;109(4):338-43 - PubMed
  8. Sci Adv. 2018 Mar 02;4(3):eaap9744 - PubMed
  9. Science. 2016 Jul 1;353(6294):62-7 - PubMed
  10. Nature. 2005 Jun 30;435(7046):1210-3 - PubMed
  11. Nano Lett. 2016 Aug 10;16(8):4773-8 - PubMed
  12. Science. 2015 Jun 19;348(6241):1344-7 - PubMed
  13. Phys Rev Lett. 2006 Aug 4;97(5):055502 - PubMed
  14. Phys Rev Lett. 2011 Nov 11;107(20):208101 - PubMed
  15. Science. 2008 Jul 18;321(5887):379-82 - PubMed
  16. Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5300-E5307 - PubMed
  17. Science. 2013 Jul 5;341(6141):56-9 - PubMed
  18. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):4846-51 - PubMed
  19. Nature. 2006 Jan 19;439(7074):303-6 - PubMed
  20. Science. 2010 Apr 30;328(5978):582-3 - PubMed
  21. Nano Lett. 2011 Oct 12;11(10):4126-33 - PubMed
  22. Ultramicroscopy. 2009 Sep;109(10):1256-62 - PubMed
  23. Science. 2008 Nov 21;322(5905):1227-31 - PubMed
  24. J Phys Chem A. 2006 Jan 12;110(1):38-44 - PubMed
  25. Opt Express. 2013 Jun 3;21(11):13592-606 - PubMed
  26. Nano Lett. 2017 Apr 12;17(4):2178-2183 - PubMed
  27. Opt Express. 2012 Aug 13;20(17):19050-9 - PubMed
  28. Science. 2015 May 1;348(6234):530-5 - PubMed

Publication Types