Display options
Share it on

Nat Biotechnol. 2018 Oct 15; doi: 10.1038/nbt.4259. Epub 2018 Oct 15.

Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells.

Nature biotechnology

Ishaan Gupta, Paul G Collier, Bettina Haase, Ahmed Mahfouz, Anoushka Joglekar, Taylor Floyd, Frank Koopmans, Ben Barres, August B Smit, Steven A Sloan, Wenjie Luo, Olivier Fedrigo, M Elizabeth Ross, Hagen U Tilgner

Affiliations

  1. Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, New York, USA.
  2. The Rockefeller University, New York, New York, USA.
  3. Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands.
  4. Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands.
  5. Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands.
  6. Department of Neurobiology, Stanford University, Stanford, California, USA.
  7. Brain and Mind Research Institute and Appel Alzheimer's Research Institute, Weill Cornell Medicine, New York, New York, USA.

PMID: 30320766 DOI: 10.1038/nbt.4259

Abstract

Full-length RNA sequencing (RNA-Seq) has been applied to bulk tissue, cell lines and sorted cells to characterize transcriptomes, but applying this technology to single cells has proven to be difficult, with less than ten single-cell transcriptomes having been analyzed thus far. Although single splicing events have been described for ≤200 single cells with statistical confidence, full-length mRNA analyses for hundreds of cells have not been reported. Single-cell short-read 3' sequencing enables the identification of cellular subtypes, but full-length mRNA isoforms for these cell types cannot be profiled. We developed a method that starts with bulk tissue and identifies single-cell types and their full-length RNA isoforms without fluorescence-activated cell sorting. Using single-cell isoform RNA-Seq (ScISOr-Seq), we identified RNA isoforms in neurons, astrocytes, microglia, and cell subtypes such as Purkinje and Granule cells, and cell-type-specific combination patterns of distant splice sites. We used ScISOr-Seq to improve genome annotation in mouse Gencode version 10 by determining the cell-type-specific expression of 18,173 known and 16,872 novel isoforms.

References

  1. Nat Genet. 2018 Jan;50(1):151-158 - PubMed
  2. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1291-9 - PubMed
  3. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12975-9 - PubMed
  4. Nat Commun. 2017 Jul 19;8:16027 - PubMed
  5. Nature. 2007 Jan 11;445(7124):168-76 - PubMed
  6. Nucleic Acids Res. 2014 Jan;42(Database issue):D764-70 - PubMed
  7. Glia. 2014 Oct;62(10):1713-23 - PubMed
  8. Elife. 2016 Feb 01;5:e11752 - PubMed
  9. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9869-74 - PubMed
  10. Science. 2016 Jun 24;352(6293):1586-90 - PubMed
  11. Nat Struct Mol Biol. 2007 Mar;14(3):185-93 - PubMed
  12. Neuron. 2014 Oct 22;84(2):386-98 - PubMed
  13. Elife. 2015 Apr 13;4:null - PubMed
  14. Science. 2014 Feb 14;343(6172):776-9 - PubMed
  15. G3 (Bethesda). 2013 Mar;3(3):387-97 - PubMed
  16. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4821-30 - PubMed
  17. Nat Biotechnol. 2014 Oct;32(10):1053-8 - PubMed
  18. Genome Biol. 2007;8(6):R108 - PubMed
  19. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9689-94 - PubMed
  20. Nat Biotechnol. 2012 Jul 01;30(7):693-700 - PubMed
  21. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 - PubMed
  22. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  23. Genome Res. 2018 Feb;28(2):231-242 - PubMed
  24. Nat Neurosci. 2015 Dec;18(12):1819-31 - PubMed
  25. Mol Cell. 2017 Jul 6;67(1):148-161.e5 - PubMed
  26. Nat Biotechnol. 2018 Jan;36(1):89-94 - PubMed
  27. Genome Res. 2012 Sep;22(9):1760-74 - PubMed
  28. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90 - PubMed
  29. PLoS One. 2010 Feb 12;5(2):e9198 - PubMed
  30. Nat Biotechnol. 2015 Jul;33(7):736-42 - PubMed
  31. Neuron. 2016 Jan 6;89(1):37-53 - PubMed
  32. BMC Genomics. 2017 Feb 3;18(1):126 - PubMed
  33. Bioinformatics. 2005 May 1;21(9):1859-75 - PubMed
  34. Nat Biotechnol. 2018 Apr;36(4):338-345 - PubMed
  35. Nat Commun. 2017 Jan 16;8:14049 - PubMed
  36. Nature. 2002 Dec 5;420(6915):520-62 - PubMed
  37. Science. 2015 Mar 6;347(6226):1138-42 - PubMed
  38. Genome Biol. 2018 Mar 29;19(1):46 - PubMed
  39. Nature. 2013 Jun 13;498(7453):236-40 - PubMed
  40. Genome Biol. 2015 Sep 30;16:204 - PubMed
  41. Nat Protoc. 2014 Jan;9(1):171-81 - PubMed
  42. Sci Rep. 2016 Aug 24;6:31602 - PubMed
  43. Nat Med. 2011 Jun;17(6):720-5 - PubMed
  44. Nat Biotechnol. 2015 May;33(5):495-502 - PubMed
  45. Development. 2014 Nov;141(21):4031-41 - PubMed
  46. Nat Biotechnol. 2013 Nov;31(11):1009-14 - PubMed
  47. Mol Cell. 2005 Aug 5;19(3):393-404 - PubMed

Publication Types