Display options
Share it on

Eur J Transl Myol. 2018 Aug 23;28(3):7687. doi: 10.4081/ejtm.2018.7687. eCollection 2018 Jul 10.

Increasing autophagy does not affect neurogenic muscle atrophy.

European journal of translational myology

Eva Pigna, Krizia Sanna, Dario Coletti, Zhenlin Li, Ara Parlakian, Sergio Adamo, Viviana Moresi

Affiliations

  1. Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Italy.
  2. Interuniversity Institute of Myology, Italy.
  3. Sorbonne Université, CNRS UMR 8256-INSERM ERL U1164, IBPS B2A Department of Biological Adaptation and Aging, Paris, France.

PMID: 30344980 PMCID: PMC6176397 DOI: 10.4081/ejtm.2018.7687

Abstract

Physiological autophagy plays a crucial role in the regulation of muscle mass and metabolism, while the excessive induction or the inhibition of the autophagic flux contributes to the progression of several diseases. Autophagy can be activated by different stimuli, including cancer, exercise, caloric restriction and denervation. The latter leads to muscle atrophy through the activation of catabolic pathways, i.e. the ubiquitin-proteasome system and autophagy. However, the kinetics of autophagy activation and the upstream molecular pathways in denervated skeletal muscle have not been reported yet. In this study, we characterized the kinetics of autophagic induction, quickly triggered by denervation, and report the Akt/mTOR axis activation. Besides, with the aim to assess the relative contribution of autophagy in neurogenic muscle atrophy, we triggered autophagy with different stimuli along with denervation, and observed that four week-long autophagic induction, by either intermitted fasting or rapamycin treatment, did not significantly affect muscle mass loss. We conclude that: i) autophagy does not play a major role in inducing muscle loss following denervation; ii) nonetheless, autophagy may have a regulatory role in denervation induced muscle atrophy, since it is significantly upregulated as early as eight hours after denervation; iii) Akt/mTOR axis, AMPK and FoxO3a are activated consistently with the progression of muscle atrophy, further highlighting the complexity of the signaling response to the atrophying stimulus deriving from denervation.

Keywords: Autophagy; Denervation; Intermittent fasting; Neurogenic muscle atrophy; Rapamycin

Conflict of interest statement

Conflict of Interest: All authors declare no conflicts of interests.

References

  1. Skelet Muscle. 2015 Mar 18;5:9 - PubMed
  2. Cell Metab. 2007 Dec;6(6):458-71 - PubMed
  3. Oncogene. 2008 Aug 14;27(35):4860-4 - PubMed
  4. Dis Model Mech. 2013 Jan;6(1):25-39 - PubMed
  5. Cell Cycle. 2015;14(13):2011-7 - PubMed
  6. J Physiol. 2012 Oct 15;590(20):5211-30 - PubMed
  7. Autophagy. 2016;12(1):1-222 - PubMed
  8. Am J Physiol Cell Physiol. 2011 Feb;300(2):C318-27 - PubMed
  9. J Muscle Res Cell Motil. 2015 Dec;36(6):405-21 - PubMed
  10. Nat Cell Biol. 2008 May;10(5):602-10 - PubMed
  11. Int J Biochem Cell Biol. 2014 Aug;53:127-33 - PubMed
  12. J Muscle Res Cell Motil. 2007;28(4-5):249-58 - PubMed
  13. Autophagy. 2010 Nov;6(8):1078-89 - PubMed
  14. Curr Biol. 2007 Oct 9;17(19):1646-56 - PubMed
  15. Sci Signal. 2014 Feb 25;7(314):ra18 - PubMed
  16. J Cell Physiol. 2012 Apr;227(4):1569-76 - PubMed
  17. Mol Cell Biol. 2010 Jan;30(2):470-80 - PubMed
  18. Int J Cardiol. 2017 Jan 15;227:201-208 - PubMed
  19. Am J Pathol. 2013 Apr;182(4):1367-78 - PubMed
  20. FASEB J. 2013 May;27(5):1990-2000 - PubMed
  21. Int J Cell Biol. 2012;2012:736905 - PubMed
  22. J Cell Sci. 1999 Nov;112 ( Pt 22):4079-87 - PubMed
  23. Cell Metab. 2009 Dec;10(6):507-15 - PubMed
  24. J Biol Chem. 2007 Oct 12;282(41):30107-19 - PubMed
  25. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1649-54 - PubMed
  26. Science. 2001 Nov 23;294(5547):1704-8 - PubMed
  27. FEBS Lett. 2010 Apr 2;584(7):1287-95 - PubMed
  28. Am J Physiol Cell Physiol. 2006 Sep;291(3):C518-28 - PubMed
  29. Nat Commun. 2015 Apr 10;6:6670 - PubMed
  30. J Biol Chem. 1994 Sep 2;269(35):22162-8 - PubMed
  31. Science. 2011 Jun 17;332(6036):1429-33 - PubMed
  32. Eur J Transl Myol. 2015 Mar 11;25(2):4832 - PubMed
  33. Eur J Transl Myol. 2017 Mar 03;27(1):6406 - PubMed
  34. Eur J Transl Myol. 2014 Mar 27;24(1):3296 - PubMed
  35. Autophagy. 2009 Feb;5(2):230-1 - PubMed
  36. Sci Rep. 2016 May 31;6:26991 - PubMed
  37. Mol Cell. 2004 May 7;14(3):395-403 - PubMed
  38. J Biol Chem. 2002 Jul 5;277(27):23977-80 - PubMed
  39. Cell. 1999 Mar 19;96(6):857-68 - PubMed
  40. Cell Metab. 2008 Nov;8(5):425-36 - PubMed
  41. Dis Model Mech. 2014 Apr;7(4):471-81 - PubMed
  42. Amyotroph Lateral Scler. 2009 Apr;10(2):99-106 - PubMed
  43. Nat Cell Biol. 2001 Nov;3(11):1014-9 - PubMed
  44. Mol Biol Cell. 2004 Mar;15(3):1101-11 - PubMed
  45. J Biol Chem. 2004 Apr 30;279(18):18614-22 - PubMed
  46. J Cell Sci. 2008 Aug 15;121(Pt 16):2685-95 - PubMed
  47. Cell. 2004 Apr 30;117(3):399-412 - PubMed
  48. Mol Biol Cell. 2011 Nov;22(22):4424-34 - PubMed
  49. Cell Res. 2014 Jan;24(1):24-41 - PubMed
  50. J Biol Chem. 2013 Jan 11;288(2):1125-34 - PubMed

Publication Types