Display options
Share it on

Micromachines (Basel). 2018 May 17;9(5). doi: 10.3390/mi9050243.

Nanostructure-Enabled and Macromolecule-Grafted Surfaces for Biomedical Applications.

Micromachines

Madeline Small, Addison Faglie, Alexandra J Craig, Martha Pieper, Vivian E Fernand Narcisse, Pierre F Neuenschwander, Shih-Feng Chou

Affiliations

  1. Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA. [email protected].
  2. Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA. [email protected].
  3. Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA. [email protected].
  4. Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA. [email protected].
  5. Department of Chemistry and Physics, School of Arts and Sciences, LeTourneau University, Longview, TX 75607, USA. [email protected].
  6. Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA. [email protected].
  7. Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA. [email protected].

PMID: 30424176 PMCID: PMC6187347 DOI: 10.3390/mi9050243

Abstract

Advances in nanotechnology and nanomaterials have enabled the development of functional biomaterials with surface properties that reduce the rate of the device rejection in injectable and implantable biomaterials. In addition, the surface of biomaterials can be functionalized with macromolecules for stimuli-responsive purposes to improve the efficacy and effectiveness in drug release applications. Furthermore, macromolecule-grafted surfaces exhibit a hierarchical nanostructure that mimics nanotextured surfaces for the promotion of cellular responses in tissue engineering. Owing to these unique properties, this review focuses on the grafting of macromolecules on the surfaces of various biomaterials (e.g., films, fibers, hydrogels, and etc.) to create nanostructure-enabled and macromolecule-grafted surfaces for biomedical applications, such as thrombosis prevention and wound healing. The macromolecule-modified surfaces can be treated as a functional device that either passively inhibits adverse effects from injectable and implantable devices or actively delivers biological agents that are locally based on proper stimulation. In this review, several methods are discussed to enable the surface of biomaterials to be used for further grafting of macromolecules. In addition, we review surface-modified films (coatings) and fibers with respect to several biomedical applications. Our review provides a scientific update on the current achievements and future trends of nanostructure-enabled and macromolecule-grafted surfaces in biomedical applications.

Keywords: grafting; macromolecules; surfaces; thrombosis; wound healing

References

  1. Regen Biomater. 2017 Jun;4(3):191-206 - PubMed
  2. Int J Pharm. 2012 Nov 15;438(1-2):279-86 - PubMed
  3. Adv Drug Deliv Rev. 2013 Jan;65(1):10-6 - PubMed
  4. Adv Drug Deliv Rev. 2009 Oct 5;61(12):1033-42 - PubMed
  5. Int J Biol Macromol. 2008 Dec;43(5):401-14 - PubMed
  6. Biomaterials. 1996 Jun;17(11):1121-6 - PubMed
  7. Acta Biomater. 2016 Aug;40:142-152 - PubMed
  8. J Chromatogr A. 2018 Apr 13;1545:22-31 - PubMed
  9. Adv Mater. 2012 Apr 17;24(15):1994-8 - PubMed
  10. J Nanosci Nanotechnol. 2009 Feb;9(2):1098-102 - PubMed
  11. J Colloid Interface Sci. 2017 Oct 1;503:168-177 - PubMed
  12. Colloids Surf B Biointerfaces. 2016 Jun 1;142:105-113 - PubMed
  13. Int J Pharm. 2014 Feb 28;462(1-2):52-65 - PubMed
  14. Int J Mol Sci. 2009 Nov 20;10(10):4352-74 - PubMed
  15. Mater Sci Eng C Mater Biol Appl. 2016 Jun;63:222-30 - PubMed
  16. Chemosphere. 2018 May;198:30-39 - PubMed
  17. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:812-820 - PubMed
  18. Anal Chem. 2009 Mar 1;81(5):2004-12 - PubMed
  19. Biomaterials. 2010 Jun;31(16):4457-66 - PubMed
  20. Langmuir. 2005 Nov 8;21(23):10644-54 - PubMed
  21. JACC Cardiovasc Interv. 2009 Apr;2(4):277-83 - PubMed
  22. Biomaterials. 2013 Jan;34(4):1433-41 - PubMed
  23. Chem Soc Rev. 2009 Feb;38(2):453-68 - PubMed
  24. Carbohydr Polym. 2017 Jul 1;167:145-157 - PubMed
  25. Spinal Cord. 2006 Sep;44(9):523-9 - PubMed
  26. Langmuir. 2017 Apr 25;33(16):4076-4082 - PubMed
  27. Bioact Mater. 2017 May 18;2(3):121-130 - PubMed
  28. J Control Release. 2017 Nov 28;266:321-330 - PubMed
  29. Photochem Photobiol. 2009 Sep-Oct;85(5):1177-81 - PubMed
  30. Int J Pharm. 2008 Feb 4;348(1-2):35-45 - PubMed
  31. J Biotechnol. 2005 Mar 2;116(1):21-33 - PubMed
  32. J Biol Chem. 1993 Oct 15;268(29):21489-92 - PubMed
  33. Acc Chem Res. 2008 Sep;41(9):1086-97 - PubMed
  34. Environ Sci Pollut Res Int. 2014;21(16):9877-86 - PubMed
  35. Bioengineering (Basel). 2018 Jan 27;5(1):null - PubMed
  36. Int J Nanomedicine. 2012;7:5327-38 - PubMed
  37. J Biotechnol. 2009 Apr 20;141(1-2):58-63 - PubMed
  38. Langmuir. 2008 Aug 19;24(16):8850-6 - PubMed
  39. J Biomed Mater Res A. 2004 Dec 1;71(3):369-76 - PubMed
  40. Biomacromolecules. 2010 Oct 11;11(10):2748-59 - PubMed
  41. Biomaterials. 2005 Dec;26(36):7606-15 - PubMed
  42. Opt Express. 2017 Jun 26;25(13):15330-15335 - PubMed
  43. Int J Pharm. 2010 Apr 15;389(1-2):130-8 - PubMed
  44. J Mater Sci Mater Med. 2007 Jul;18(7):1263-77 - PubMed
  45. Int J Pharm. 2013 Dec 5;457(2):372-94 - PubMed
  46. J Biomed Mater Res A. 2011 Sep 1;98(3):461-72 - PubMed
  47. J Biomed Mater Res A. 2008 Aug;86(2):364-73 - PubMed
  48. Acta Biomater. 2017 Apr 1;52:74-80 - PubMed
  49. Nanomedicine. 2007 Dec;3(4):311-21 - PubMed
  50. Eur J Pharm Sci. 2009 Jun 28;37(3-4):427-33 - PubMed
  51. Colloids Surf B Biointerfaces. 2009 Feb 1;68(2):238-44 - PubMed
  52. Langmuir. 2014 Aug 19;30(32):9625-36 - PubMed
  53. Biomol Eng. 2002 Aug;19(2-6):133-41 - PubMed
  54. Chem Rev. 2001 Nov;101(11):3245-73 - PubMed
  55. J Am Chem Soc. 2014 Jul 2;136(26):9404-13 - PubMed
  56. Biomater Res. 2016 Jun 20;20:18 - PubMed
  57. Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:1261-1274 - PubMed
  58. Carbohydr Polym. 2013 Jan 30;92(1):388-93 - PubMed
  59. Chem Rev. 2011 Jun 8;111(6):3736-827 - PubMed
  60. Langmuir. 2005 Mar 29;21(7):3044-53 - PubMed
  61. Acta Biomater. 2014 Jan;10(1):11-25 - PubMed
  62. Biointerphases. 2014 Jun;9(2):029010 - PubMed
  63. Colloids Surf B Biointerfaces. 2011 Feb 1;82(2):371-7 - PubMed
  64. J Control Release. 2016 Dec 10;243:342-356 - PubMed
  65. Small. 2005 Oct;1(10):959-63 - PubMed
  66. Biomaterials. 2011 Dec;32(34):8797-805 - PubMed
  67. Biochem Biophys Res Commun. 2016 May 13;473(4):920-925 - PubMed
  68. ACS Appl Mater Interfaces. 2013 Oct 23;5(20):10337-45 - PubMed
  69. Nanomedicine. 2017 Aug;13(6):1913-1923 - PubMed
  70. Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:140-7 - PubMed
  71. J Colloid Interface Sci. 2009 Oct 1;338(1):40-7 - PubMed
  72. Biofouling. 2014;30(4):387-99 - PubMed
  73. J Cell Sci. 2007 Apr 1;120(Pt 7):1235-44 - PubMed
  74. ACS Appl Mater Interfaces. 2014;6(21):19265-74 - PubMed
  75. J Hazard Mater. 2009 Jul 15;166(1):270-6 - PubMed
  76. Biomaterials. 2016 May;87:82-92 - PubMed
  77. J Vasc Surg. 2018 Aug;68(2):597-606 - PubMed
  78. Biomaterials. 2008 Dec;29(34):4532-9 - PubMed
  79. Carbohydr Polym. 2018 Jun 15;190:31-42 - PubMed
  80. Mater Sci Eng C Mater Biol Appl. 2017 Nov 1;80:387-396 - PubMed
  81. Bioconjug Chem. 2005 Jan-Feb;16(1):122-30 - PubMed
  82. J Biomater Sci Polym Ed. 2012;23(13):1629-57 - PubMed
  83. Int J Pharm. 2013 Sep 10;453(2):630-40 - PubMed
  84. Biomaterials. 2008 Feb;29(5):587-96 - PubMed
  85. Acta Biomater. 2016 Jul 15;39:146-155 - PubMed
  86. ISRN Endocrinol. 2012;2012:340632 - PubMed
  87. Colloids Surf B Biointerfaces. 2014 Jan 1;113:25-32 - PubMed
  88. J Pharm Sci. 2013 Jul;102(7):2069-81 - PubMed
  89. Tissue Eng. 2005 Jul-Aug;11(7-8):1149-58 - PubMed
  90. J Control Release. 2014 Sep 28;190:36-40 - PubMed
  91. Food Chem. 2018 Mar 15;243:428-434 - PubMed
  92. Heart Lung. 2018 May - Jun;47(3):231-236 - PubMed
  93. Acta Biomater. 2010 Dec;6(12):4589-95 - PubMed
  94. J Control Release. 2002 Apr 23;80(1-3):197-205 - PubMed
  95. J Biomater Sci Polym Ed. 2007;18(4):469-85 - PubMed
  96. Chem Commun (Camb). 2012 Aug 4;48(60):7486-8 - PubMed
  97. Adv Funct Mater. 2012 Jul 24;22(14):2949-2955 - PubMed
  98. Biomaterials. 2012 Apr;33(12):3375-87 - PubMed
  99. Biomaterials. 2009 Feb;30(5):711-20 - PubMed
  100. Bioresour Technol. 2010 Nov;101(21):8211-6 - PubMed
  101. Acta Biomater. 2017 Oct 1;61:169-179 - PubMed
  102. Mater Sci Eng C Mater Biol Appl. 2016 May;62:329-37 - PubMed
  103. Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:61-69 - PubMed
  104. Eur J Pharm Biopharm. 2018 Apr;125:38-50 - PubMed
  105. Biomaterials. 2016 Nov;106:24-45 - PubMed

Publication Types

Grant support