Display options
Share it on

Micromachines (Basel). 2018 Sep 17;9(9). doi: 10.3390/mi9090469.

Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures.

Micromachines

Pawel R Debski, Karolina Sklodowska, Jacek A Michalski, Piotr M Korczyk, Miroslaw Dolata, Slawomir Jakiela

Affiliations

  1. Department of Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland. [email protected].
  2. Department of Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland. [email protected].
  3. Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland. [email protected].
  4. Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 17 Lukasiewicza Street, 09400 Plock, Poland. [email protected].
  5. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02106 Warsaw, Poland. [email protected].
  6. Department of Econophysics and Physics Application, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland. [email protected].
  7. Department of Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland. [email protected].

PMID: 30424402 PMCID: PMC6187375 DOI: 10.3390/mi9090469

Abstract

Emerging microfluidic technology has introduced new precision controls over reaction conditions. Owing to the small amount of reagents, microfluidics significantly lowers the cost of carrying a single reaction. Moreover, in two-phase systems, each part of a dispersed fluid can be treated as an independent chemical reactor with a volume from femtoliters to microliters, increasing the throughput. In this work, we propose a microfluidic device that provides continuous recirculation of droplets in a closed loop, maintaining low consumption of oil phase, no cross-contamination, stabilized temperature, a constant condition of gas exchange, dynamic feedback control on droplet volume, and a real-time optical characterization of bacterial growth in a droplet. The channels (tubing) and junction cubes are made of Teflon fluorinated ethylene propylene (FEP) to ensure non-wetting conditions and to prevent the formation of biofilm, which is particularly crucial for biological experiments. We show the design and operation of a novel microfluidic loop with the circular motion of microdroplet reactors monitored with optical sensors and precision temperature controls. We have employed the proposed system for long term monitoring of bacterial growth during the antibiotic chloramphenicol treatment. The proposed system can find applications in a broad field of biomedical diagnostics and therapy.

Keywords: Escherichia coli; antibiotic treatment; bacteria cultures; microfluidic loop; screening

References

  1. Lab Chip. 2009 Nov 21;9(22):3303-5 - PubMed
  2. Lab Chip. 2011 Dec 7;11(23):4057-62 - PubMed
  3. Rep Prog Phys. 2012 Jan;75(1):016601 - PubMed
  4. Biomicrofluidics. 2013 Jan;7(1):11302 - PubMed
  5. Nature. 2014 Mar 13;507(7491):181-9 - PubMed
  6. Biofabrication. 2018 Mar 12;10(3):035001 - PubMed
  7. Lab Chip. 2018 Mar 13;18(6):890-901 - PubMed
  8. Lab Chip. 2010 Feb 21;10(4):484-93 - PubMed
  9. Biosens Bioelectron. 2011 Jan 15;26(5):1993-9 - PubMed
  10. Interface Focus. 2016 Aug 6;6(4):20160011 - PubMed
  11. J Med Chem. 1980 Dec;23(12):1299-305 - PubMed
  12. PLoS One. 2017 Apr 3;12(4):e0175050 - PubMed
  13. Angew Chem Int Ed Engl. 2012 Dec 3;51(49):12176-92 - PubMed
  14. Lab Chip. 2016 Jun 21;16(12):2198-210 - PubMed
  15. Lab Chip. 2012 Jun 21;12(12):2146-55 - PubMed
  16. Biofabrication. 2016 Jun 20;8(2):022001 - PubMed
  17. Lab Chip. 2016 Jun 21;16(12):2168-87 - PubMed
  18. J Biosci Bioeng. 2015 Apr;119(4):492-5 - PubMed
  19. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):023015 - PubMed
  20. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15013-8 - PubMed
  21. Lab Chip. 2012 May 7;12(9):1629-37 - PubMed
  22. Lab Chip. 2016 Oct 7;16(19):3695-9 - PubMed
  23. Angew Chem Int Ed Engl. 2013 Aug 19;52(34):8908-11 - PubMed
  24. Biomed Microdevices. 2007 Dec;9(6):855-62 - PubMed
  25. Talanta. 2016 Jun 1;153:253-9 - PubMed
  26. Anal Chem. 2016 Dec 20;88(24):12006-12012 - PubMed
  27. Lab Chip. 2008 Aug;8(8):1244-54 - PubMed
  28. Chem Rev. 2017 Jun 28;117(12):7964-8040 - PubMed
  29. Lab Chip. 2004 Aug;4(4):310-5 - PubMed
  30. Anal Chem. 2005 Mar 15;77(6):1539-44 - PubMed
  31. Lab Chip. 2010 Aug 21;10(16):2032-45 - PubMed
  32. Nat Chem. 2013 Nov;5(11):905-15 - PubMed
  33. Lab Chip. 2009 Mar 7;9(5):692-8 - PubMed

Publication Types

Grant support