Display options
Share it on

Front Physiol. 2018 Oct 12;9:1450. doi: 10.3389/fphys.2018.01450. eCollection 2018.

Skeletal Muscle Fiber Type in Hypoxia: Adaptation to High-Altitude Exposure and Under Conditions of Pathological Hypoxia.

Frontiers in physiology

Thomas Chaillou

Affiliations

  1. School of Health Sciences, Örebro University, Örebro, Sweden.

PMID: 30369887 PMCID: PMC6194176 DOI: 10.3389/fphys.2018.01450

Abstract

Skeletal muscle is able to modify its size, and its metabolic/contractile properties in response to a variety of stimuli, such as mechanical stress, neuronal activity, metabolic and hormonal influences, and environmental factors. A reduced oxygen availability, called hypoxia, has been proposed to induce metabolic adaptations and loss of mass in skeletal muscle. In addition, several evidences indicate that muscle fiber-type composition could be affected by hypoxia. The main purpose of this review is to explore the adaptation of skeletal muscle fiber-type composition to exposure to high altitude (ambient hypoxia) and under conditions of pathological hypoxia, including chronic obstructive pulmonary disease (COPD), chronic heart failure (CHF) and obstructive sleep apnea syndrome (OSAS). The muscle fiber-type composition of both adult animals and humans is not markedly altered during chronic exposure to high altitude. However, the fast-to-slow fiber-type transition observed in hind limb muscles during post-natal development is impaired in growing rats exposed to severe altitude. A slow-to-fast transition in fiber type is commonly found in lower limb muscles from patients with COPD and CHF, whereas a transition toward a slower fiber-type profile is often found in the diaphragm muscle in these two pathologies. A slow-to-fast transformation in fiber type is generally observed in the upper airway muscles in rodent models of OSAS. The factors potentially responsible for the adaptation of fiber type under these hypoxic conditions are also discussed in this review. The impaired locomotor activity most likely explains the changes in fiber type composition in growing rats exposed to severe altitude. Furthermore, chronic inactivity and muscle deconditioning could result in the slow-to-fast fiber-type conversion in lower limb muscles during COPD and CHF, while the factors responsible for the adaptation of muscle fiber type during OSAS remain hypothetical. Finally, the role played by cellular hypoxia, hypoxia-inducible factor-1 alpha (HIF-1α), and other molecular regulators in the adaptation of muscle fiber-type composition is described in response to high altitude exposure and conditions of pathological hypoxia.

Keywords: chronic heart failure; chronic obstructive pulmonary disease; hypoxia-inducible factor-1 alpha; muscle plasticity; myosin heavy chain; obstructive sleep apnea syndrome; oxygen

References

  1. J Appl Physiol (1985). 1996 Nov;81(5):1946-51 - PubMed
  2. J Clin Invest. 2013 Jun;123(6):2564-75 - PubMed
  3. J Appl Physiol (1985). 2011 Dec;111(6):1597-605 - PubMed
  4. Exp Physiol. 2010 Jun;95(6):723-35 - PubMed
  5. Int J Chron Obstruct Pulmon Dis. 2006;1(3):279-87 - PubMed
  6. Chest. 2002 Oct;122(4):1400-6 - PubMed
  7. Pflugers Arch. 1977 Sep 16;370(3):227-32 - PubMed
  8. J Proteome Res. 2007 May;6(5):1974-84 - PubMed
  9. FASEB J. 2001 Nov;15(13):2445-53 - PubMed
  10. J Physiol. 2006 Mar 1;571(Pt 2):415-24 - PubMed
  11. Am J Physiol Regul Integr Comp Physiol. 2015 May 1;308(9):R779-91 - PubMed
  12. Eur Respir J. 1997 Dec;10(12):2853-60 - PubMed
  13. Thorax. 2013 Dec;68(12):1140-9 - PubMed
  14. Respiration. 2008;76(1):21-7 - PubMed
  15. Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2059-69 - PubMed
  16. Chest. 2003 Mar;123(3):875-81 - PubMed
  17. Circ Heart Fail. 2015 Jul;8(4):799-808 - PubMed
  18. Pflugers Arch. 2005 Apr;450(1):45-52 - PubMed
  19. J Appl Physiol (1985). 1997 Oct;83(4):1291-9 - PubMed
  20. Acta Physiol (Oxf). 2018 May;223(1):e13030 - PubMed
  21. J Appl Physiol (1985). 2001 Oct;91(4):1555-62 - PubMed
  22. FASEB J. 2005 Jan;19(1):43-52 - PubMed
  23. Am J Physiol Heart Circ Physiol. 2001 Jul;281(1):H241-52 - PubMed
  24. Cell Mol Life Sci. 2015 Dec;72(24):4681-96 - PubMed
  25. Proc Biol Sci. 2009 Oct 22;276(1673):3645-53 - PubMed
  26. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21866-71 - PubMed
  27. Am J Physiol Heart Circ Physiol. 2017 Jun 1;312(6):H1154-H1162 - PubMed
  28. Respir Res. 2014 Mar 25;15:35 - PubMed
  29. Annu Rev Pathol. 2014;9:47-71 - PubMed
  30. J Appl Physiol (1985). 2005 Mar;98(3):889-94 - PubMed
  31. Jpn J Physiol. 2000 Dec;50(6):561-8 - PubMed
  32. J Physiol. 2016 Mar 1;594(5):1137-49 - PubMed
  33. Int J Cardiol. 2005 Oct 10;104(3):298-306 - PubMed
  34. Sci Rep. 2016 Jun 02;6:27088 - PubMed
  35. J Appl Physiol (1985). 1992 Dec;73(6):2701-8 - PubMed
  36. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):313-5 - PubMed
  37. Wiley Interdiscip Rev Syst Biol Med. 2010 May-Jun;2(3):336-361 - PubMed
  38. J Am Heart Assoc. 2017 Oct 24;6(10):null - PubMed
  39. Circulation. 1989 Nov;80(5):1338-46 - PubMed
  40. Eur Respir J. 2013 Jun;41(6):1275-83 - PubMed
  41. Circulation. 1992 May;85(5):1751-9 - PubMed
  42. Physiology (Bethesda). 2014 Nov;29(6):388-402 - PubMed
  43. Diabetes. 2017 Dec;66(12):2942-2951 - PubMed
  44. J Physiol. 2007 Aug 1;582(Pt 3):1277-87 - PubMed
  45. J Cell Physiol. 2016 Feb;231(2):377-92 - PubMed
  46. Nature. 2002 Aug 15;418(6899):797-801 - PubMed
  47. J Exp Biol. 2010 Dec 15;213(Pt 24):4125-36 - PubMed
  48. Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6382-6387 - PubMed
  49. J Am Med Dir Assoc. 2016 May 1;17(5):415-20 - PubMed
  50. J Histochem Cytochem. 2013 Jul;61(7):487-99 - PubMed
  51. Curr Heart Fail Rep. 2017 Dec;14(6):489-497 - PubMed
  52. Aviat Space Environ Med. 1992 Jul;63(7):583-7 - PubMed
  53. Proteomics. 2008 Nov;8(22):4668-79 - PubMed
  54. J Appl Physiol (1985). 1989 May;66(5):2454-61 - PubMed
  55. Eur Respir J. 2007 Aug;30(2):245-52 - PubMed
  56. Mol Biol Evol. 2015 Aug;32(8):1962-76 - PubMed
  57. Acta Physiol Scand. 1991 Mar;141(3):435-9 - PubMed
  58. Physiol Rev. 2004 Jan;84(1):209-38 - PubMed
  59. FASEB J. 2016 Dec;30(12):3929-3941 - PubMed
  60. N Engl J Med. 1997 Dec 18;337(25):1799-806 - PubMed
  61. Mol Cell Biochem. 2012 May;364(1-2):101-13 - PubMed
  62. Cell Physiol Biochem. 2015;35(1):148-59 - PubMed
  63. Pflugers Arch. 1995 Mar;429(5):601-6 - PubMed
  64. J Appl Physiol (1985). 1995 Aug;79(2):389-97 - PubMed
  65. Am J Physiol Heart Circ Physiol. 2014 May;306(9):H1364-70 - PubMed
  66. Sci Rep. 2017 Aug 1;7(1):6998 - PubMed
  67. Exerc Sport Sci Rev. 2011 Jul;39(3):150-4 - PubMed
  68. Acta Physiol Scand. 2004 Mar;180(3):271-80 - PubMed
  69. Genes Dev. 1998 Aug 15;12(16):2499-509 - PubMed
  70. Respir Physiol Neurobiol. 2016 Jul;228:30-8 - PubMed
  71. Eur Respir J. 2001 May;17(5):939-45 - PubMed
  72. Eur Respir J. 1999 Apr;13(4):850-4 - PubMed
  73. Acta Physiol (Oxf). 2017 May;220(1):99-112 - PubMed
  74. High Alt Med Biol. 2008 Summer;9(2):158-66 - PubMed
  75. J Physiol. 2011 Mar 15;589(Pt 6):1443-54 - PubMed
  76. J Card Fail. 1995 Sep;1(4):267-72 - PubMed
  77. Dev Cell. 2009 Nov;17(5):662-73 - PubMed
  78. Int J Chron Obstruct Pulmon Dis. 2007;2(3):289-300 - PubMed
  79. J Clin Invest. 1995 Oct;96(4):1916-26 - PubMed
  80. Thorax. 2012 Jan;67(1):26-34 - PubMed
  81. J Appl Physiol (1985). 2011 Sep;111(3):881-90 - PubMed
  82. J Appl Physiol (1985). 1991 May;70(5):1938-42 - PubMed
  83. Circulation. 1997 Feb 18;95(4):910-6 - PubMed
  84. J Physiol. 2003 Apr 15;548(Pt 2):639-48 - PubMed
  85. Acta Physiol Scand. 1995 Jul;154(3):417-8 - PubMed
  86. Acta Physiol (Oxf). 2010 Aug;199(4):451-63 - PubMed
  87. J Clin Pathol. 2009 Jan;62(1):70-6 - PubMed
  88. J Physiol. 2018 Jul;596(14):2865-2881 - PubMed
  89. J Appl Physiol (1985). 2009 Sep;107(3):952-61 - PubMed
  90. J Appl Physiol (1985). 1987 Jul;63(1):3-11 - PubMed
  91. Pflugers Arch. 1996 May;432(1):50-8 - PubMed
  92. Biol Rev Camb Philos Soc. 2011 Aug;86(3):564-600 - PubMed
  93. Sleep Res Online. 1998;1(1):24-7 - PubMed
  94. FASEB J. 2012 Apr;26(4):1431-41 - PubMed
  95. Sleep Disord. 2014;2014:978358 - PubMed
  96. Eur J Appl Physiol Occup Physiol. 1990;60(5):331-6 - PubMed
  97. Nihon Seirigaku Zasshi. 1988;50(4):163-8 - PubMed
  98. Circulation. 1990 Feb;81(2):518-27 - PubMed
  99. J Physiol. 2017 Jul 15;595(14):4785-4801 - PubMed
  100. Eur Heart J. 2013 Feb;34(7):512-9 - PubMed
  101. Sci Rep. 2016 May 20;6:26415 - PubMed
  102. Mol Cell Biochem. 2014 May;390(1-2):31-40 - PubMed
  103. J Cell Physiol. 2008 Dec;217(3):674-85 - PubMed
  104. Eur Respir J. 2004 Dec;24(6):971-9 - PubMed
  105. Lancet. 2014 Feb 22;383(9918):736-47 - PubMed
  106. Chron Respir Dis. 2017 May;14(2):127-139 - PubMed
  107. Acta Physiol (Oxf). 2013 Dec;209(4):272-82 - PubMed
  108. Eur J Oral Sci. 2010 Apr;118(2):139-44 - PubMed
  109. Front Physiol. 2016 Dec 15;7:604 - PubMed
  110. J Appl Physiol (1985). 1996 Jul;81(1):419-25 - PubMed
  111. Eur Heart J. 1996 Aug;17(8):1239-50 - PubMed
  112. J Am Heart Assoc. 2016 Jul 27;5(8): - PubMed
  113. Eur J Heart Fail. 2015 Mar;17(3):263-72 - PubMed
  114. Am J Physiol Regul Integr Comp Physiol. 2012 Mar 1;302(5):R643-54 - PubMed
  115. Biochim Biophys Acta Mol Basis Dis. 2018 Jul 25;: - PubMed
  116. J Gen Physiol. 2005 Aug;126(2):173-8 - PubMed
  117. J Exp Biol. 2006 Jun;209(Pt 12):2239-48 - PubMed
  118. J Appl Physiol (1985). 2013 May;114(9):1222-34 - PubMed
  119. J Appl Physiol (1985). 2000 Feb;88(2):479-86 - PubMed
  120. Skelet Muscle. 2016 Mar 05;6:5 - PubMed
  121. Med Sci Sports Exerc. 1998 Oct;30(10):1467-74 - PubMed
  122. Exp Physiol. 2010 Aug;95(8):899-907 - PubMed
  123. J Anat. 1992 Oct;181 ( Pt 2):327-33 - PubMed
  124. J Appl Physiol (1985). 1991 Dec;71(6):2114-21 - PubMed
  125. Med Sci Sports Exerc. 1997 Jul;29(7):860-6 - PubMed
  126. PLoS Biol. 2004 Oct;2(10):e288 - PubMed

Publication Types