Display options
Share it on

J Mol Model. 2018 Nov 06;24(12):334. doi: 10.1007/s00894-018-3851-0.

DFT study of the dual catalytic role of L-proline in the aldol reaction and the effect of water on it.

Journal of molecular modeling

Yasaman Nobakht, Nematollah Arshadi

Affiliations

  1. Department of Chemistry, Faculty of Sciences, University of Zanjan, Zanjan, Iran.
  2. Department of Chemistry, Faculty of Sciences, University of Zanjan, Zanjan, Iran. [email protected].

PMID: 30402658 DOI: 10.1007/s00894-018-3851-0

Abstract

The aldol reaction in the presence of L-proline acting as an organocatalyst is a well-known example of asymmetric synthesis. Many theoretical and experimental studies have been carried out to probe the mechanism of this reaction. In this work, two levels of density functional theory in the gas phase and DMSO were used to elucidate the best pathways for this reaction, with the enamine and enol considered intermediates and L-proline considered either a reactant or a facilitator. The calculations indicated that both intermediates are formed simultaneously in the reaction medium. Interestingly, the formation of the enamine intermediate predominates in DMSO at room temperature, whereas the enol becomes the predominant intermediate upon the addition of water. Graphical Abstract The dual role of L-proline leads to single stereoisomeric aldol product via two completely different pathways.

Keywords: Aldol reaction; DFT calculations; L-Proline; Organocatalysis; Reaction mechanism

References

  1. Org Biomol Chem. 2010 Sep 21;8(18):4043-50 - PubMed
  2. Chemistry. 2010 Jul 26;16(28):8480-6 - PubMed
  3. J Phys Chem A. 2013 Nov 27;117(47):12590-600 - PubMed
  4. Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20678-85 - PubMed
  5. Chem Rev. 2011 Aug 10;111(8):5042-137 - PubMed
  6. Chem Commun (Camb). 2013 May 10;49(37):3821-32 - PubMed
  7. Chem Commun (Camb). 2009 Dec 21;(47):7303-5 - PubMed
  8. J Phys Chem B. 2016 Mar 3;120(8):1486-96 - PubMed
  9. J Am Chem Soc. 2009 Aug 19;131(32):11478-84 - PubMed
  10. Chem Rev. 2006 Aug;106(8):3210-35 - PubMed
  11. Angew Chem Int Ed Engl. 2008;47(42):8002-18 - PubMed
  12. J Phys Chem A. 2009 Sep 24;113(38):10376-84 - PubMed
  13. Angew Chem Int Ed Engl. 2007;46(21):3798-800 - PubMed
  14. J Org Chem. 2012 May 18;77(10):4784-92 - PubMed
  15. J Org Chem. 2006 Dec 8;71(25):9510-2 - PubMed
  16. Org Lett. 2012 Jan 6;14(1):260-3 - PubMed
  17. Chem Rev. 2007 Dec;107(12):5713-43 - PubMed
  18. J Phys Chem A. 2013 Apr 4;117(13):2862-72 - PubMed
  19. Proc Natl Acad Sci U S A. 2010 Nov 30;107(48):20636-41 - PubMed
  20. J Am Chem Soc. 2012 Apr 11;134(14):6286-95 - PubMed
  21. Chem Sci. 2016 Aug 1;7(8):5421-5427 - PubMed
  22. J Am Chem Soc. 2003 Mar 5;125(9):2475-9 - PubMed
  23. J Org Chem. 2005 Nov 25;70(24):9712-6 - PubMed
  24. J Am Chem Soc. 2007 Dec 12;129(49):15100-1 - PubMed
  25. Chem Commun (Camb). 2009 Mar 7;(9):1088-90 - PubMed
  26. Chem Commun (Camb). 2017 Aug 3;53(63):8874-8877 - PubMed
  27. Chem Commun (Camb). 2002 Dec 21;(24):3024-5 - PubMed
  28. Angew Chem Int Ed Engl. 2004 Apr 2;43(15):1983-6 - PubMed
  29. Angew Chem Int Ed Engl. 2006 Dec 11;45(48):8100-2 - PubMed
  30. Acc Chem Res. 2004 Aug;37(8):558-69 - PubMed
  31. J Am Chem Soc. 2006 Mar 22;128(11):3737-47 - PubMed
  32. J Am Chem Soc. 2006 Jan 25;128(3):734-5 - PubMed

Publication Types