Display options
Share it on

Comput Struct Biotechnol J. 2018 Oct 18;16:396-403. doi: 10.1016/j.csbj.2018.10.008. eCollection 2018.

Quantitative comparison of ABC membrane protein type I exporter structures in a standardized way.

Computational and structural biotechnology journal

Georgina Csizmadia, Bianka Farkas, Zoltán Spagina, Hedvig Tordai, Tamás Hegedűs

Affiliations

  1. MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
  2. Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
  3. Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary.

PMID: 30425800 PMCID: PMC6222291 DOI: 10.1016/j.csbj.2018.10.008

Abstract

An increasing number of ABC membrane protein structures are determined by cryo-electron microscopy and X-ray crystallography, consequently identifying differences between their conformations has become an arising issue. Therefore, we propose to define standardized measures for ABC Type I exporter structure characterization. We set conformational vectors, conftors, which describe the relative orientation of domains and can highlight structural differences. In addition, continuum electrostatics calculations were performed to characterize the energetics of membrane insertion illuminating functionally crucial regions. In summary, the proposed metrics contribute to deeper understanding of ABC membrane proteins' structural features, structure validation, and analysis of movements observed in a molecular dynamics trajectory. Moreover, the concept of standardized metrics can be applied not only to ABC membrane protein structures (http://conftors.hegelab.org).

Keywords: ABC proteins; ABC, ATP binding cassette; CFTR, cystic fibrosis transmembrane conductance regulator; CG, coarse grained; CH, coupling helix; COG, center of geometry; ICD, intracellular domain; Membrane proteins; NBD, nucleotide binding domain; Quantitative structural properties; Structure comparison; Structure validation; TH, transmembrane helix; TM, transmembrane; TMD, transmembrane domain

References

  1. Cell. 2015 Apr 23;161(3):450-457 - PubMed
  2. Nat Rev Genet. 2015 Jan;16(1):45-56 - PubMed
  3. Nature. 2015 Sep 10;525(7568):172-4 - PubMed
  4. PLoS Comput Biol. 2017 Jun 22;13(6):e1005594 - PubMed
  5. Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9145-50 - PubMed
  6. Protein Sci. 2006 Jun;15(6):1318-33 - PubMed
  7. Drug Discov Today. 2008 May;13(9-10):379-93 - PubMed
  8. Protein Sci. 2018 Jan;27(1):112-128 - PubMed
  9. Bioinformatics. 2013 Apr 1;29(7):845-54 - PubMed
  10. Science. 1989 Sep 8;245(4922):1066-73 - PubMed
  11. Sci Transl Med. 2014 Jul 23;6(246):246ra97 - PubMed
  12. Structure. 2017 Dec 5;25(12):1916-1927 - PubMed
  13. Annu Rev Med. 2007;58:157-70 - PubMed
  14. Lancet Respir Med. 2014 Jul;2(7):527-38 - PubMed
  15. J Comput Chem. 2011 Jul 30;32(10):2319-27 - PubMed
  16. J Chem Theory Comput. 2009 Sep 8;5(9):2531-43 - PubMed
  17. J Phys Chem B. 2007 Jul 12;111(27):7812-24 - PubMed
  18. Biochem Soc Trans. 2018 Oct 19;46(5):1093-1098 - PubMed
  19. Nat Struct Mol Biol. 2018 Apr;25(4):333-340 - PubMed
  20. Structure. 2011 Oct 12;19(10):1395-412 - PubMed
  21. FEBS J. 2009 Feb;276(4):964-72 - PubMed
  22. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W522-5 - PubMed
  23. J Mol Biol. 2007 Mar 9;366(5):1475-96 - PubMed
  24. Nature. 1989 Oct 5;341(6241):456-8 - PubMed
  25. Nature. 2016 May 04;533(7604):561-4 - PubMed
  26. Nature. 2015 Aug 27;524(7566):433-8 - PubMed
  27. Prog Biophys Mol Biol. 2012 Aug;109(3):95-107 - PubMed
  28. Sci Transl Med. 2014 Jul 23;6(246):246ra96 - PubMed
  29. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D275-8 - PubMed
  30. Nat Struct Mol Biol. 2012 Mar 25;19(4):395-402 - PubMed
  31. Biochim Biophys Acta. 2011 Dec;1808(12):2954-64 - PubMed
  32. Structure. 2015 Jul 7;23(7):1350-61 - PubMed
  33. Nature. 2006 Sep 14;443(7108):180-5 - PubMed
  34. Biochem Biophys Res Commun. 2017 Sep 30;491(4):986-993 - PubMed
  35. Cell. 2017 Jul 27;170(3):483-491.e8 - PubMed
  36. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10340-5 - PubMed
  37. Cell. 2018 Jan 11;172(1-2):81-89.e10 - PubMed
  38. Nat Med. 2018 Nov;24(11):1732-1742 - PubMed
  39. Database (Oxford). 2016 Mar 28;2016:null - PubMed
  40. J Biol Chem. 2006 Oct 20;281(42):31689-95 - PubMed
  41. Biochemistry. 2018 Oct 30;57(43):6234-6246 - PubMed
  42. Nucleic Acids Res. 2013 Jan;41(Database issue):D524-9 - PubMed
  43. Nat Struct Mol Biol. 2016 Jun 7;23(6):487-93 - PubMed
  44. PLoS One. 2010 Sep 29;5(9):null - PubMed
  45. J Biomol Struct Dyn. 2000 Apr;17(5):811-9 - PubMed
  46. Biochim Biophys Acta. 2011 Aug;1808(8):1957-74 - PubMed
  47. Nature. 1992 Jan 30;355(6359):472-5 - PubMed
  48. PLoS One. 2018 Jan 25;13(1):e0191882 - PubMed
  49. Cell. 2016 Dec 1;167(6):1586-1597.e9 - PubMed
  50. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 27;364(1514):239-45 - PubMed
  51. Sci Rep. 2017 Dec 5;7(1):17013 - PubMed
  52. J Chem Inf Model. 2011 Apr 25;51(4):930-46 - PubMed
  53. Mol Biol Cell. 2016 Feb 1;27(3):424-33 - PubMed
  54. Science. 2018 Feb 23;359(6378):915-919 - PubMed
  55. Nature. 2017 Jun 22;546(7659):504-509 - PubMed
  56. Cell. 2017 Mar 23;169(1):85-95.e8 - PubMed
  57. J Cell Sci. 2014 Jan 1;127(Pt 1):72-84 - PubMed

Publication Types