Display options
Share it on

Front Aging Neurosci. 2018 Oct 23;10:331. doi: 10.3389/fnagi.2018.00331. eCollection 2018.

Altered Functional Interactions of Inhibition Regions in Cognitively Normal Parkinson's Disease.

Frontiers in aging neuroscience

Deborah L Harrington, Qian Shen, Rebecca J Theilmann, Gabriel N Castillo, Irene Litvan, J Vincent Filoteo, Mingxiong Huang, Roland R Lee

Affiliations

  1. Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
  2. Department of Radiology, University of California, San Diego, La Jolla, CA, United States.
  3. Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.
  4. Psychology Service, VA San Diego Healthcare System, San Diego, CA, United States.
  5. Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.
  6. Department of Radiology, VA San Diego Healthcare System, San Diego, CA, United States.

PMID: 30405399 PMCID: PMC6206214 DOI: 10.3389/fnagi.2018.00331

Abstract

Deficient inhibitory control in Parkinson's disease (PD) is often observed in situations requiring inhibition of impulsive or prepotent behaviors. Although activation of the right-hemisphere frontal-basal ganglia response inhibition network is partly altered in PD, disturbances in interactions of these regions are poorly understood, especially in patients without cognitive impairment. The present study investigated context-dependent connectivity of response inhibition regions in PD patients with normal cognition and control participants who underwent fMRI while performing a stop signal task. PD participants were tested off antiparkinsonian medication. To determine if functional disturbances depended on underlying brain structure, aberrant connectivity was correlated with brain volume and white-matter tissue diffusivity. We found no group differences in response inhibition proficiency. Yet the PD group showed functional reorganization in the long-range connectivity of inhibition regions, despite preserved within network connectivity. Successful inhibition in PD differed from the controls by strengthened connectivity of cortical regions, namely the right dorsolateral prefrontal cortex, pre-supplementary motor area and right caudal inferior frontal gyrus, largely with ventral and dorsal attention regions, but also the substantia nigra and default mode network regions. Successful inhibition in controls was distinguished by strengthened connectivity of the right rostral inferior frontal gyrus and subcortical inhibition nodes (right caudate, substantia nigra, and subthalamic nucleus). In both groups, the strength of context-dependent connectivity correlated with various indices of response inhibition performance. Mechanisms that may underlie aberrantly stronger context-specific connectivity include reduced coherence within reorganized systems, compensatory mechanisms, and/or the reorganization of intrinsic networks. In PD, but not controls, abnormally strengthened connectivity was linked to individual differences in underlying brain volumes and tissue diffusivity, despite no group differences in structural variables. The pattern of structural-functional associations suggested that subtle decreases in tissue diffusivity of underlying tracts and posterior cortical volumes may undermine the enhancement of normal cortical-striatal connectivity or cause strengthening in cortical-cortical connectivity. These novel findings demonstrate that functionally reorganized interactions of inhibition regions predates the development of inhibition deficits and clinically significant cognitive impairment in PD. We speculate that altered interactions of inhibition regions with attention-related networks and the dopaminergic system may presage future decline in inhibitory control.

Keywords: Parkinson’s disease; brain volume; cognition; context-dependent connectivity; diffusion tensor imaging; response inhibition; task-activated functional MRI

References

  1. Neuroscientist. 2007 Jun;13(3):214-28 - PubMed
  2. Science. 2012 Sep 21;337(6101):1492-5 - PubMed
  3. Brain. 2013 Aug;136(Pt 8):2405-18 - PubMed
  4. Trends Cogn Sci. 2014 Apr;18(4):177-85 - PubMed
  5. J Neurosci. 2014 Aug 13;34(33):10798-807 - PubMed
  6. Brain Res. 2015 Dec 2;1628(Pt A):117-29 - PubMed
  7. Neuron. 2016 Oct 19;92(2):544-554 - PubMed
  8. PLoS One. 2014 Jan 21;9(1):e85747 - PubMed
  9. NPJ Parkinsons Dis. 2017 Jul 7;3:23 - PubMed
  10. Neuroimage Clin. 2015 Jan 27;7:449-55 - PubMed
  11. Neurosci Biobehav Rev. 2009 May;33(5):631-46 - PubMed
  12. Sci Rep. 2017 Sep 7;7(1):10821 - PubMed
  13. Hum Brain Mapp. 2015 Nov;36(11):4317-33 - PubMed
  14. Hum Brain Mapp. 2012 Mar;33(3):727-39 - PubMed
  15. Mov Disord. 2018 Apr;33(4):503-510 - PubMed
  16. Front Psychol. 2012 Feb 21;3:37 - PubMed
  17. Neuron. 2002 Jan 31;33(3):341-55 - PubMed
  18. Neuroimage. 2014 Jan 1;84:1042-52 - PubMed
  19. Mov Disord. 2016 Jan;31(1):103-10 - PubMed
  20. Annu Rev Neurosci. 2013 Jul 8;36:313-36 - PubMed
  21. Hum Brain Mapp. 2015 Jan;36(1):199-212 - PubMed
  22. Neuroimage. 2012 Jul 16;61(4):1277-86 - PubMed
  23. Behav Res Ther. 2011 Nov;49(11):771-80 - PubMed
  24. J Int Neuropsychol Soc. 2016 Feb;22(2):205-15 - PubMed
  25. Mov Disord. 2015 Dec;30(14):1912-20 - PubMed
  26. Biol Psychiatry. 2009 Apr 1;65(7):550-5 - PubMed
  27. J Parkinsons Dis. 2015;5(4):971-81 - PubMed
  28. Elife. 2017 Jul 25;6: - PubMed
  29. Nat Rev Neurosci. 2002 Mar;3(3):201-15 - PubMed
  30. Mov Disord. 2015 Feb;30(2):128-40 - PubMed
  31. Nat Neurosci. 2013 Aug;16(8):1118-24 - PubMed
  32. J Neural Transm (Vienna). 2015 May;122(5):653-60 - PubMed
  33. Exp Neurol. 2013 Jan;239:1-12 - PubMed
  34. Biol Psychiatry. 2015 Apr 15;77(8):740-8 - PubMed
  35. Hum Brain Mapp. 2012 Jan;33(1):89-104 - PubMed
  36. Neurology. 2012 Dec 4;79(23):2226-32 - PubMed
  37. Hum Brain Mapp. 2018 Jan;39(1):189-203 - PubMed
  38. Front Neurol. 2013 Apr 12;4:37 - PubMed
  39. Behav Neurosci. 2017 Feb;131(1):20-32 - PubMed
  40. Psychol Rev. 2013 Apr;120(2):329-55 - PubMed
  41. Exp Brain Res. 2011 Jul;212(3):371-84 - PubMed
  42. Parkinsonism Relat Disord. 2015 Aug;21(8):899-904 - PubMed
  43. Appetite. 2011 Apr;56(2):345-9 - PubMed
  44. Eur J Radiol. 2015 Jul;84(7):1318-24 - PubMed
  45. J Parkinsons Dis. 2014;4(1):111-22 - PubMed
  46. Parkinsonism Relat Disord. 2014 Jan;20(1):1-7 - PubMed
  47. J Exp Psychol Hum Percept Perform. 1984 Apr;10(2):276-91 - PubMed
  48. Neuroscience. 2012 Mar 29;206:144-54 - PubMed
  49. Neuroimage. 2015 Jun;113:340-55 - PubMed
  50. Hum Brain Mapp. 2016 Mar;37(3):1026-37 - PubMed
  51. Brain Struct Funct. 2017 Dec;222(9):3973-3990 - PubMed
  52. Brain Connect. 2017 Apr;7(3):152-171 - PubMed
  53. Neuroimage. 2010 Nov 1;53(2):653-63 - PubMed
  54. Mov Disord. 2009 Oct 15;24(13):1962-9 - PubMed
  55. Neuroimage. 2006 Jul 15;31(4):1487-505 - PubMed
  56. Neuroimage. 2014 Oct 1;99:571-88 - PubMed
  57. Neuroimage. 2006 Jul 1;31(3):1177-87 - PubMed
  58. J Int Neuropsychol Soc. 2009 May;15(3):426-37 - PubMed
  59. Brain. 2016 Aug;139(Pt 8):2235-48 - PubMed
  60. Annu Rev Clin Psychol. 2012;8:49-76 - PubMed
  61. J Behav Ther Exp Psychiatry. 2011 Sep;42(3):384-8 - PubMed
  62. Nat Rev Neurosci. 2015 Dec;16(12):719-32 - PubMed
  63. Neurobiol Aging. 2015 Jan;36(1):470-5 - PubMed
  64. Mov Disord. 2010 Nov 15;25(15):2649-53 - PubMed
  65. Mov Disord. 2012 Mar;27(3):349-56 - PubMed
  66. Neuropsychol Rev. 2014 Sep;24(3):355-70 - PubMed
  67. Mov Disord. 2016 Dec;31(12):1846-1853 - PubMed
  68. Trends Cogn Sci. 2015 Aug;19(8):445-52 - PubMed
  69. J Neurosci. 2006 Mar 1;26(9):2424-33 - PubMed
  70. Neuroimage. 2013 Jan 1;64:601-15 - PubMed
  71. Neurology. 1990 Oct;40(10):1529-34 - PubMed
  72. Neurosci Biobehav Rev. 2009 May;33(5):647-61 - PubMed
  73. Front Aging Neurosci. 2017 Jun 19;9:197 - PubMed
  74. Hum Brain Mapp. 2018 Oct;39(10):4065-4082 - PubMed
  75. Brain. 2014 Apr;137(Pt 4):1145-55 - PubMed
  76. Neuroimage. 2018 Oct 15;180(Pt B):526-533 - PubMed
  77. Neuron. 2014 Jul 2;83(1):238-51 - PubMed
  78. Brain. 2014 Feb;137(Pt 2):565-75 - PubMed
  79. Neurology. 2014 Nov 25;83(22):2046-53 - PubMed
  80. Neuroimage. 2014 Nov 1;101:21-34 - PubMed
  81. Exp Brain Res. 2011 Sep;213(4):435-45 - PubMed

Publication Types

Grant support