Display options
Share it on

Neural Regen Res. 2019 Jan;14(1):132-139. doi: 10.4103/1673-5374.243718.

Folic acid contributes to peripheral nerve injury repair by promoting Schwann cell proliferation, migration, and secretion of nerve growth factor.

Neural regeneration research

Wei-Bo Kang, Yong-Jie Chen, Du-Yi Lu, Jia-Zhi Yan

Affiliations

  1. Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

PMID: 30531087 PMCID: PMC6263007 DOI: 10.4103/1673-5374.243718

Abstract

After peripheral nerve injury, intraperitoneal injection of folic acid improves axon quantity, increases axon density and improves electromyography results. However, the mechanisms for this remain unclear. This study explored whether folic acid promotes peripheral nerve injury repair by affecting Schwann cell function. Primary Schwann cells were obtained from rats by in vitro separation and culture. Cell proliferation, assayed using the Cell Counting Kit-8 assay, was higher in cells cultured for 72 hours with 100 mg/L folic acid compared with the control group. Cell proliferation was also higher in the 50, 100, 150, and 200 mg/L folic acid groups compared with the control group after culture for 96 hours. Proliferation was markedly higher in the 100 mg/L folic acid group compared with the 50 mg/L folic acid group and the 40 ng/L nerve growth factor group. In Transwell assays, the number of migrated Schwann cells dramatically increased after culture with 100 and 150 mg/L folic acid compared with the control group. In nerve growth factor enzyme-linked immunosorbent assays, treatment of Schwann cell cultures with 50, 100, and 150 mg/L folic acid increased levels of nerve growth factor in the culture medium compared with the control group at 3 days. The nerve growth factor concentration of Schwann cell cultures treated with 100 mg/L folic acid group was remarkably higher than that in the 50 and 150 mg/L folic acid groups at 3 days. Nerve growth factor concentration in the 10, 50, and 100 mg/L folic acid groups was higher than that in the control group at 7 days. The nerve growth factor concentration in the 50 mg/L folic acid group was remarkably higher than that in the 10 and 100 mg/L folic acid groups at 7 days. In vivo, 80 μg/kg folic acid was intraperitoneally administrated for 7 consecutive days after sciatic nerve injury. Immunohistochemical staining showed that the number of Schwann cells in the folic acid group was greater than that in the control group. We suggest that folic acid may play a role in improving the repair of peripheral nerve injury by promoting the proliferation and migration of Schwann cells and the secretion of nerve growth factors.

Keywords: Schwann cell; biomaterial; cell functions; folic acid; nerve regeneration; neural regeneration; neurotrophic factor; peripheral nerve injury; peripheral nerve repair; tissue engineering

Conflict of interest statement

None

References

  1. J Biol Chem. 2001 Oct 26;276(43):39990-40000 - PubMed
  2. Ann R Coll Surg Engl. 2002 Jan;84(1):47-53 - PubMed
  3. J Neurosci Res. 2002 Dec 15;70(6):746-55 - PubMed
  4. Biomaterials. 2003 Jun;24(13):2405-12 - PubMed
  5. J Neurosci Res. 2004 Aug 1;77(3):453-61 - PubMed
  6. Ann Neurol. 2004 Aug;56(2):221-7 - PubMed
  7. Schizophr Bull. 2007 Jul;33(4):853-8 - PubMed
  8. J Biomed Mater Res A. 2007 Apr;81(1):135-49 - PubMed
  9. Biochimie. 2008 May;90(5):697-704 - PubMed
  10. Biochem Biophys Res Commun. 2008 Nov 28;376(4):787-92 - PubMed
  11. J Clin Invest. 2010 May;120(5):1383-6 - PubMed
  12. J Clin Invest. 2010 May;120(5):1603-16 - PubMed
  13. Neurochem Res. 2010 Oct;35(10):1643-51 - PubMed
  14. Stem Cells Dev. 2012 Jan 20;21(2):321-30 - PubMed
  15. J Control Release. 2011 Nov 30;156(1):2-10 - PubMed
  16. Int J Pharm. 2011 Dec 15;421(2):283-90 - PubMed
  17. Chin J Cancer. 2013 Jan;32(1):21-30 - PubMed
  18. Adv Nutr. 2012 Jan;3(1):21-38 - PubMed
  19. Neuron. 2012 Feb 23;73(4):729-42 - PubMed
  20. Plast Reconstr Surg. 2012 Oct;130(4):866-76 - PubMed
  21. Cell Adh Migr. 2013 Jan-Feb;7(1):18-22 - PubMed
  22. Cell Biochem Biophys. 2013 Jul;66(3):559-66 - PubMed
  23. J Nutr Biochem. 2013 Jul;24(7):1295-301 - PubMed
  24. Int J Surg. 2013;11(3):259-64 - PubMed
  25. J Biomed Mater Res A. 2014 Feb;102(2):315-23 - PubMed
  26. J Nutr Biochem. 2013 Nov;24(11):1817-22 - PubMed
  27. J Biomed Mater Res A. 2014 Aug;102(8):2680-91 - PubMed
  28. Toxicol Ind Health. 2016 May;32(5):832-40 - PubMed
  29. Sci China Life Sci. 2014 Feb;57(2):256-62 - PubMed
  30. Genes Dev. 2014 Feb 1;28(3):290-303 - PubMed
  31. J Nutr Biochem. 2014 Apr;25(4):496-502 - PubMed
  32. Pain Manag. 2014 May;4(3):191-6 - PubMed
  33. PLoS One. 2014 Jul 01;9(7):e101300 - PubMed
  34. Biomed Res Int. 2014;2014:698256 - PubMed
  35. J Biomed Mater Res A. 2015 Jul;103(7):2355-64 - PubMed
  36. J Reconstr Microsurg. 2015 Mar;31(3):191-7 - PubMed
  37. J Clin Diagn Res. 2014 Dec;8(12):OD01-3 - PubMed
  38. Cell Mol Neurobiol. 2015 Aug;35(6):827-40 - PubMed
  39. Life Sci. 2016 Jan 1;144:19-25 - PubMed
  40. Mol Neurobiol. 2016 Nov;53(9):6548-6556 - PubMed
  41. Cochrane Database Syst Rev. 2015 Dec 14;(12):CD007950 - PubMed
  42. Pain Manag. 2016;6(1):25-9 - PubMed
  43. Mater Sci Eng C Mater Biol Appl. 2016 Aug 1;65:425-32 - PubMed
  44. J Hum Nutr Diet. 2016 Oct;29(5):643-51 - PubMed
  45. Immunobiology. 2017 Feb;222(2):308-315 - PubMed
  46. Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):1132-1140 - PubMed
  47. Biomed Res Int. 2017;2017:5393268 - PubMed
  48. J Biomed Mater Res A. 2017 Nov;105(11):3148-3158 - PubMed
  49. Nutrients. 2017 Aug 26;9(9):null - PubMed
  50. Haematologica. 2017 Dec;102(12):1985-1994 - PubMed
  51. Arch Pharm Res. 2017 Nov;40(11):1219-1237 - PubMed
  52. Plast Reconstr Surg. 1989 Jan;83(1):129-38 - PubMed
  53. Dev Neurobiol. 2018 Apr;78(4):391-402 - PubMed
  54. Neural Regen Res. 2018 May;13(5):846-853 - PubMed
  55. Neural Regen Res. 2018 Oct;13(10):1796-1803 - PubMed
  56. J Reconstr Microsurg. 1994 Sep;10(5):345-54 - PubMed
  57. J Neurosci Methods. 1997 Dec 30;78(1-2):133-7 - PubMed

Publication Types