Display options
Share it on

Sens Actuators B Chem. 2019 Jan 15;279:447-457. doi: 10.1016/j.snb.2018.09.121. Epub 2018 Oct 04.

Microfluidic Exponential Rolling Circle Amplification for Sensitive microRNA Detection Directly from Biological Samples.

Sensors and actuators. B, Chemical

Hongmei Cao, Xin Zhou, Yong Zeng

Affiliations

  1. Department of Chemistry, University of Kansas, Lawrence, KS 66045.
  2. University of Kansas Cancer Center, Kansas City, KS 66160.

PMID: 30533973 PMCID: PMC6284813 DOI: 10.1016/j.snb.2018.09.121

Abstract

There is an urgent need of sensitive bioanalytical platforms for sensitive and precise quantification of low-abundance microRNA targets in complex biological samples, including liquid biopsies of tumors. Many of current miRNA biosensing methods require laborious sample pretreatment procedures, including extraction of total RNA, which largely limits their biomedical and clinical applications. Herein we developed an integrated Microfluidic Exponential Rolling Circle Amplification (MERCA) platform for sensitive and specific detection of microRNAs directly in minimally processed samples. The MERCA system integrates and streamlines solid-phase miRNA isolation, miRNA-adapter ligation, and a dualphase exponential rolling circle amplification (eRCA) assay in one analytical workflow. By marrying the advantages of microfluidics in leveraging bioassay performance with the high sensitivity of eRCA, our method affords a remarkably low limit of detection at <10 zeptomole levels, with the ability to discriminate single-nucleotide difference. Using the MERCA chip, we demonstrated quantitative detection of miRNAs in total RNA, raw cell lysate, and cellderived exosomes. Comparing with the parallel TaqMan RT-qPCR measurements verified the adaptability of the MERCA system for detection of miRNA biomarkers in complex biological materials. In particular, high sensitivity of our method enables direct detection of low-level exosomal miRNAs in as few as 2 × 10

Keywords: Microfluidic Exponential Rolling Circle Amplification (MERCA); cell-derived exosomes; complex biological samples; microRNA detection; raw cell lysate

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. Analyst. 2018 Mar 26;143(7):1662-1669 - PubMed
  2. Sci Rep. 2017 May 11;7(1):1750 - PubMed
  3. Nucleic Acids Res. 2005 Nov 27;33(20):e179 - PubMed
  4. Mol Immunol. 2012 Apr;50(4):278-86 - PubMed
  5. J Mol Diagn. 2013 Nov;15(6):827-34 - PubMed
  6. Lab Chip. 2016 Oct 5;16(20):3866-3884 - PubMed
  7. Lab Chip. 2010 May 21;10(10):1262-6 - PubMed
  8. Anal Chem. 2013 Aug 20;85(16):7941-7 - PubMed
  9. J Clin Med. 2016 Mar 29;5(4):null - PubMed
  10. RNA. 2006 Sep;12(9):1747-52 - PubMed
  11. Angew Chem Int Ed Engl. 2010 Jul 26;49(32):5498-501 - PubMed
  12. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2257-61 - PubMed
  13. PLoS One. 2013 Oct 21;8(10):e78115 - PubMed
  14. J Cell Mol Med. 2014 Mar;18(3):371-90 - PubMed
  15. Nature. 2005 Jun 9;435(7043):834-8 - PubMed
  16. Endocr Relat Cancer. 2010 Jan 29;17(1):F19-36 - PubMed
  17. BMC Genomics. 2014 May 23;15:395 - PubMed
  18. Nat Commun. 2016 Mar 29;7:11150 - PubMed
  19. Biosens Bioelectron. 2018 Mar 15;101:167-173 - PubMed
  20. N Engl J Med. 2015 Jun 11;372(24):2359-62 - PubMed
  21. Sci Rep. 2016 Jan 20;6:19529 - PubMed
  22. Clin Chem. 2015 Jan;61(1):56-63 - PubMed
  23. BMC Genomics. 2013 May 10;14:319 - PubMed
  24. Cancer Cell. 2014 Nov 10;26(5):707-21 - PubMed
  25. Angew Chem Int Ed Engl. 2009;48(18):3268-72 - PubMed
  26. Cancer Gene Ther. 2016 Dec;23(12):415-418 - PubMed
  27. Nat Rev Cancer. 2006 Apr;6(4):259-69 - PubMed
  28. Anal Chem. 2016 Mar 15;88(6):3075-81 - PubMed
  29. Biosens Bioelectron. 2013 Jun 15;44:115-21 - PubMed
  30. Nucleic Acids Res. 2009 Jan;37(Database issue):D98-104 - PubMed
  31. Anal Bioanal Chem. 2009 May;394(2):469-79 - PubMed
  32. Anal Chem. 2011 Sep 15;83(18):7179-85 - PubMed
  33. Acta Biochim Pol. 2011;58(4):535-40 - PubMed
  34. Chem Soc Rev. 2011 Dec;40(12):5771-88 - PubMed
  35. Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):13999-4004 - PubMed
  36. Analyst. 2012 Jul 21;137(14):3234-7 - PubMed
  37. Sci Rep. 2016 Feb 02;6:20297 - PubMed
  38. Angew Chem Int Ed Engl. 2011 Mar 1;50(10):2289-93 - PubMed
  39. Sci Rep. 2015 Mar 24;5:9430 - PubMed
  40. Nature. 2015 Nov 5;527(7576):100-104 - PubMed
  41. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14888-93 - PubMed
  42. Lab Chip. 2013 Nov 7;13(21):4190-7 - PubMed
  43. Nat Protoc. 2008;3(2):190-6 - PubMed
  44. Cancer Epidemiol Biomarkers Prev. 2010 Apr;19(4):907-11 - PubMed
  45. Chem Commun (Camb). 2014 Feb 14;50(13):1576-8 - PubMed
  46. Nat Cell Biol. 2008 Dec;10(12):1470-6 - PubMed
  47. Nucleic Acids Res. 2010 Aug;38(15):e156 - PubMed
  48. Chem Commun (Camb). 2014 Sep 4;50(68):9704-6 - PubMed
  49. Clin Chem. 2008 Oct;54(10):1696-704 - PubMed
  50. Cancer Res. 2011 Jan 15;71(2):550-60 - PubMed
  51. Nat Protoc. 2008;3(6):1077-84 - PubMed
  52. J Mol Diagn. 2010 May;12(3):335-44 - PubMed
  53. Chem Commun (Camb). 2012 Jan 7;48(2):194-6 - PubMed
  54. Microrna. 2014;3(1):18-28 - PubMed
  55. Biosens Bioelectron. 2018 May 15;105:218-225 - PubMed
  56. J Extracell Vesicles. 2014 Mar 26;3:null - PubMed
  57. Nature. 2015 Nov 19;527(7578):329-35 - PubMed
  58. Bioconjug Chem. 2015 Mar 18;26(3):602-7 - PubMed
  59. Nat Methods. 2010 Sep;7(9):687-92 - PubMed

Publication Types

Grant support