Display options
Share it on

Front Microbiol. 2018 Nov 19;9:2763. doi: 10.3389/fmicb.2018.02763. eCollection 2018.

Wort Substrate Consumption and Metabolite Production During Lambic Beer Fermentation and Maturation Explain the Successive Growth of Specific Bacterial and Yeast Species.

Frontiers in microbiology

Jonas De Roos, Peter Vandamme, Luc De Vuyst

Affiliations

  1. Research Group of Industrial Microbiology and Food Biotechnology, Bioengineering Sciences Department, Vrije Universiteit Brussel, Brussels, Belgium.
  2. Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.

PMID: 30510547 PMCID: PMC6252343 DOI: 10.3389/fmicb.2018.02763

Abstract

The present study combined high-throughput culture-dependent plating and culture-independent amplicon sequencing with a metabolite target analysis to systematically dissect the identity, evolution, and role of the microorganisms, substrates, and metabolites during the four-phase fermentation and maturation process of lambic beer production. This led to the following new insights. The changing physicochemical parameters and substrate and metabolite compositions of the fermenting wort and maturing lambic beer provoked several transitions between microbial species and explained the four-step production process. Manual wort acidification with lactic acid shortened the enterobacterial phase and thus kept biogenic amine formation by enterobacteria present during the early stages of fermentation at a minimum. Growth advantages during the alcoholic fermentation phase caused a transition from the prevalence by

Keywords: Dekkera; MALDI-TOF MS; amplicon sequencing; lambic beer; malolactic fermentation

References

  1. Microb Ecol. 2012 Jan;63(1):12-9 - PubMed
  2. Appl Environ Microbiol. 2008 Apr;74(8):2314-20 - PubMed
  3. Methods Ecol Evol. 2015 Aug;6(8):973-980 - PubMed
  4. Appl Microbiol Biotechnol. 2014 Jan;98(2):843-53 - PubMed
  5. PLoS One. 2012;7(4):e35507 - PubMed
  6. Int J Food Microbiol. 2015 Aug 3;206:24-38 - PubMed
  7. Int J Food Microbiol. 2016 Mar 16;221:1-11 - PubMed
  8. BMC Microbiol. 2012 Sep 11;12:199 - PubMed
  9. Microb Cell Fact. 2006 Mar 17;5:10 - PubMed
  10. Bioinformatics. 2011 Aug 15;27(16):2194-200 - PubMed
  11. Nature. 2013 Jun 20;498(7454):367-70 - PubMed
  12. Curr Opin Biotechnol. 2018 Feb;49:115-119 - PubMed
  13. Appl Environ Microbiol. 2018 Nov 2;:null - PubMed
  14. Front Microbiol. 2012 May 08;3:171 - PubMed
  15. Food Microbiol. 2015 Aug;49:23-32 - PubMed
  16. Appl Environ Microbiol. 1986 Mar;51(3):539-45 - PubMed
  17. Appl Environ Microbiol. 2014 Apr;80(8):2564-72 - PubMed
  18. Appl Environ Microbiol. 2014 Mar;80(6):1848-57 - PubMed
  19. Appl Environ Microbiol. 2013 Apr;79(8):2519-26 - PubMed
  20. Appl Environ Microbiol. 2018 Mar 19;84(7): - PubMed
  21. Foods. 2015 Oct 15;4(4):581-593 - PubMed
  22. Trends Genet. 2006 Apr;22(4):183-6 - PubMed
  23. Eur J Clin Nutr. 2010 Nov;64 Suppl 3:S95-100 - PubMed
  24. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  25. Front Microbiol. 2017 Oct 31;8:2121 - PubMed
  26. Int J Food Microbiol. 2015 Aug 3;206:67-74 - PubMed
  27. Appl Environ Microbiol. 1993 Aug;59(8):2352-8 - PubMed
  28. PLoS One. 2014 Apr 18;9(4):e95384 - PubMed
  29. Appl Environ Microbiol. 2008 Apr;74(7):2144-52 - PubMed
  30. Nat Commun. 2011;2:302 - PubMed
  31. Food Chem. 2017 Mar 1;218:249-255 - PubMed
  32. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 - PubMed
  33. Elife. 2015 Mar 10;4:null - PubMed
  34. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 - PubMed
  35. Microbiol Mol Biol Rev. 2013 Jun;77(2):157-72 - PubMed
  36. Food Chem Toxicol. 2017 Jan;99:78-85 - PubMed
  37. Appl Microbiol Biotechnol. 2014 Mar;98(6):2395-413 - PubMed
  38. Appl Microbiol Biotechnol. 2013 Aug;97(15):6931-41 - PubMed
  39. PLoS One. 2015 Jan 24;10(1):e0116942 - PubMed

Publication Types