Display options
Share it on

Proc Math Phys Eng Sci. 2018 Dec;474(2220):20180511. doi: 10.1098/rspa.2018.0511. Epub 2018 Dec 12.

Simulating the effect of formation of amyloid plaques on aggregation of tau protein.

Proceedings. Mathematical, physical, and engineering sciences

I A Kuznetsov, A V Kuznetsov

Affiliations

  1. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  2. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  3. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.

PMID: 30602936 PMCID: PMC6304026 DOI: 10.1098/rspa.2018.0511

Abstract

In this paper, we develop a mathematical model that enables the investigation of the production and intracellular transport of amyloid precursor protein (APP) and tau protein in a neuron. We also investigate the aggregation of APP fragments into amyloid-β (Aβ) as well as tau aggregation into tau oligomers and neurofibrillary tangles. Using the developed model, we investigate how Aβ aggregation can influence tau transport and aggregation in both the soma and the axon. We couple the Aβ and tau agglomeration processes by assuming that the value of the kinetic constant that describes the autocatalytic growth (self-replication) reaction step of tau aggregation is proportional to the Aβ concentration. The model predicts that APP and tau are distributed differently in the axon. While APP has a uniform distribution along the axon, tau's concentration first decreases and then increases towards the synapse. Aβ is uniformly produced along the axon while misfolded tau protein is mostly produced in the proximal axon. The number of Aβ and tau polymers originating from the axon is much smaller than the number of Aβ and tau polymers originating from the soma. The rate of production of misfolded tau polymers depends on how strongly their production is facilitated by Aβ.

Keywords: Alzheimer's disease; amyloid precursor protein; axon; mathematical modelling; neuron; tau protein

Conflict of interest statement

We declare we have no competing interests.

References

  1. Mol Reprod Dev. 2000 Oct;57(2):109-10 - PubMed
  2. Biophys J. 2001 Jan;80(1):45-68 - PubMed
  3. J Neurosci. 2002 Aug 1;22(15):6394-400 - PubMed
  4. J Cell Sci. 2004 Dec 1;117(Pt 25):6129-41 - PubMed
  5. J Neurosci. 2005 Mar 2;25(9):2386-95 - PubMed
  6. J Cell Sci. 2005 Oct 15;118(Pt 20):4645-54 - PubMed
  7. Traffic. 2006 Jul;7(7):873-88 - PubMed
  8. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9619-24 - PubMed
  9. Biochem J. 2006 Dec 15;400(3):511-20 - PubMed
  10. Syst Biol (Stevenage). 2006 Jul;153(4):187-91 - PubMed
  11. J Neurosci. 2007 Mar 28;27(13):3357-63 - PubMed
  12. Nat Rev Neurosci. 2007 Sep;8(9):663-72 - PubMed
  13. J Neurosci. 2007 Sep 12;27(37):9916-27 - PubMed
  14. Biochemistry. 2008 Feb 26;47(8):2413-27 - PubMed
  15. Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4609-14 - PubMed
  16. FASEB J. 2008 Sep;22(9):3186-95 - PubMed
  17. Traffic. 2009 Nov;10(11):1655-68 - PubMed
  18. J Chem Phys. 2009 Oct 21;131(15):155103 - PubMed
  19. PLoS One. 2010 Dec 29;5(12):e15709 - PubMed
  20. Annu Rev Neurosci. 2011;34:185-204 - PubMed
  21. IUBMB Life. 2011 Jul;63(7):495-502 - PubMed
  22. Nat Rev Drug Discov. 2011 Aug 19;10(9):698-712 - PubMed
  23. Am J Pathol. 2012 Oct;181(4):1426-35 - PubMed
  24. J Biol Chem. 2012 Nov 9;287(46):38559-68 - PubMed
  25. Prog Neurobiol. 2013 Jun;105:49-59 - PubMed
  26. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9758-63 - PubMed
  27. Curr Opin Psychiatry. 2014 Mar;27(2):128-37 - PubMed
  28. JAMA Neurol. 2014 Apr;71(4):505-8 - PubMed
  29. Math Med Biol. 2015 Sep;32(3):263-83 - PubMed
  30. Cell Mol Life Sci. 2014 Aug;71(16):3139-50 - PubMed
  31. Comput Methods Biomech Biomed Engin. 2015;18(13):1485-94 - PubMed
  32. Protein Sci. 2014 Oct;23(10):1315-31 - PubMed
  33. Mol Biol Cell. 2015 Jan 15;26(2):205-17 - PubMed
  34. Mol Neurodegener. 2014 Nov 18;9:51 - PubMed
  35. Acta Neuropathol. 2015 Feb;129(2):207-20 - PubMed
  36. J Theor Biol. 2015 Apr 7;370:39-44 - PubMed
  37. Pharmacol Rep. 2015 Apr;67(2):195-203 - PubMed
  38. Biometrics. 2014 Sep;70(3):516-25 - PubMed
  39. Lancet. 2016 Jul 30;388(10043):505-17 - PubMed
  40. Nat Rev Dis Primers. 2015 Oct 15;1:15056 - PubMed
  41. J Am Chem Soc. 2016 Aug 3;138(30):9663-74 - PubMed
  42. Biomed Res Int. 2016;2016:3245935 - PubMed
  43. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4976-84 - PubMed
  44. Immunotargets Ther. 2015 Jan 08;4:27-34 - PubMed
  45. Proc Math Phys Eng Sci. 2017 May;473(2201):20170045 - PubMed
  46. J Biomed Sci. 2017 Jul 19;24(1):47 - PubMed
  47. ACS Chem Neurosci. 2017 Oct 18;8(10):2152-2158 - PubMed
  48. Nat Rev Neurol. 2017 Sep 29;13(10):612-623 - PubMed
  49. Proc Math Phys Eng Sci. 2018 Feb;474(2210):20170777 - PubMed
  50. J Biomech Eng. 2018 Nov 1;:null - PubMed
  51. Bull Math Biol. 1988;50(6):579-93 - PubMed
  52. J Neurosci. 1996 Jun 1;16(11):3601-19 - PubMed

Publication Types