Display options
Share it on

Front Physiol. 2018 Nov 28;9:1691. doi: 10.3389/fphys.2018.01691. eCollection 2018.

Neurovascular Coupling Remains Intact During Incremental Ascent to High Altitude (4240 m) in Acclimatized Healthy Volunteers.

Frontiers in physiology

Jack K Leacy, Shaelynn M Zouboules, Carli R Mann, Joel D B Peltonen, Gurkan Saran, Cassandra E Nysten, Heidi E Nysten, Tom D Brutsaert, Ken D O'Halloran, Mingma T Sherpa, Trevor A Day

Affiliations

  1. Department of Biology, Mount Royal University, Calgary, AB, Canada.
  2. Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.
  3. Red Deer Regional Hospital, Red Deer, AB, Canada.
  4. School of Education, Syracuse University, Syracuse, NY, United States.
  5. Kunde Hospital, Khumjung, Nepal.

PMID: 30546319 PMCID: PMC6279846 DOI: 10.3389/fphys.2018.01691

Abstract

Neurovascular coupling (NVC) is the temporal link between neuronal metabolic activity and regional cerebral blood flow (CBF), supporting adequate delivery of nutrients. Exposure to high altitude (HA) imposes several stressors, including hypoxia and hypocapnia, which modulate cerebrovascular tone in an antagonistic fashion. Whether these contrasting stressors and subsequent adaptations affect NVC during incremental ascent to HA is unclear. The aim of this study was to assess whether incremental ascent to HA influences the NVC response. Given that CBF is sensitive to changes in arterial blood gasses, in particular PaCO

Keywords: cerebral blood flow; high-altitude; hypocapnia; hypoxia; neurovascular coupling

References

  1. Nephrol Dial Transplant. 2014 Mar;29(3):497-506 - PubMed
  2. J Appl Physiol (1985). 2008 Jan;104(1):306-14 - PubMed
  3. J Cereb Blood Flow Metab. 2002 Jan;22(1):118-26 - PubMed
  4. Glia. 2007 Sep;55(12):1263-71 - PubMed
  5. Am J Physiol Regul Integr Comp Physiol. 2016 Mar 1;310(5):R398-413 - PubMed
  6. J Physiol. 2014 Mar 1;592(5):841-59 - PubMed
  7. Eur Respir J. 2006 Jan;27(1):165-71 - PubMed
  8. N Engl J Med. 1991 May 16;324(20):1394-401 - PubMed
  9. J Cereb Blood Flow Metab. 2018 Mar;38(3):528-539 - PubMed
  10. Physiol Behav. 2018 May 1;188:262-269 - PubMed
  11. J Appl Physiol (1985). 2006 Jan;100(1):328-35 - PubMed
  12. Physiol Rev. 2010 Apr;90(2):675-754 - PubMed
  13. J Physiol. 2011 Feb 1;589(Pt 3):741-53 - PubMed
  14. J Cereb Blood Flow Metab. 2015 May;35(5):873-81 - PubMed
  15. Brain Lang. 2007 Aug;102(2):141-52 - PubMed
  16. Exp Physiol. 2010 Feb;95(2):251-62 - PubMed
  17. J Cereb Blood Flow Metab. 2016 Apr;36(4):647-64 - PubMed
  18. J Physiol. 2018 Dec;596(24):6191-6203 - PubMed
  19. Acta Physiol (Oxf). 2011 Sep;203(1):47-59 - PubMed
  20. Croat Med J. 2016 Jun 30;57(3):223-8 - PubMed
  21. Nature. 2010 Nov 11;468(7321):232-43 - PubMed
  22. Exp Physiol. 2014 May 1;99(5):772-81 - PubMed
  23. J Neurosci Methods. 2011 Mar 30;196(2):221-37 - PubMed
  24. J Cereb Blood Flow Metab. 2015 Aug;35(8):1323-30 - PubMed
  25. Lancet Neurol. 2009 Feb;8(2):175-91 - PubMed
  26. Circ Res. 1966 Aug;19(2):274-82 - PubMed
  27. J Physiol. 2014 Dec 15;592(24):5507-27 - PubMed
  28. Neuroscience. 2016 May 26;323:96-109 - PubMed
  29. J Neurol Sci. 2011 Oct 15;309(1-2):58-62 - PubMed
  30. Am J Respir Crit Care Med. 2012 Jan 15;185(2):192-8 - PubMed
  31. Respir Physiol Neurobiol. 2007 Sep 30;158(2-3):212-23 - PubMed
  32. Physiol Behav. 2017 Dec 1;182:62-68 - PubMed

Publication Types