Display options
Share it on

3 Biotech. 2019 Jan;9(1):27. doi: 10.1007/s13205-018-1556-9. Epub 2019 Jan 02.

Microbial diversity of a Himalayan forest and characterization of rare actinomycetes for antimicrobial compounds.

3 Biotech

Nidhi Srivastava, Ipsita Nandi, Ahongshangbam Ibeyaima, Sanjay Gupta, Indira P Sarethy

Affiliations

  1. Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309 India.

PMID: 30622865 PMCID: PMC6314948 DOI: 10.1007/s13205-018-1556-9

Abstract

The slow pace of discovery of new effective drugs against multi-drug resistant pathogens and largely unsuccessful combinatorial chemistry has resulted in shifting the focus back to natural products as sources of lead molecules for antimicrobial drugs, mainly due to their structural diversity. Investigation of under-explored habitats for potentially novel microorganisms provides for wider chemodiversity. In this study, four actinomycetes, namely UK-274, UK-281, UK-282 and UK-285, which showed broad-spectrum antibacterial and antifungal activities, were isolated from Timli forest range of the biodiversity-rich Himalayan region. 16S rRNA gene sequence analysis showed that the nearest neighbours of the isolates were

Keywords: Actinomycete; Antimicrobial; Forest; Metabolite fingerprinting; Multi-drug resistant; Natural products

Conflict of interest statement

On the behalf of all authors, corresponding author states that there is no conflict of interest.This article does not contain any studies with human or animal subjects.

References

  1. Appl Microbiol. 1964 Sep;12:421-3 - PubMed
  2. Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):2049-54 - PubMed
  3. Glycobiology. 1992 Dec;2(6):535-9 - PubMed
  4. Appl Environ Microbiol. 2004 Mar;70(3):1787-94 - PubMed
  5. J Antibiot (Tokyo). 2004 Jun;57(6):373-8 - PubMed
  6. J Nat Prod. 2004 Aug;67(8):1431-3 - PubMed
  7. Nat Rev Drug Discov. 2006 Oct;5(10):835-44 - PubMed
  8. J Agric Food Chem. 2011 Mar 9;59(5):1893-9 - PubMed
  9. Arch Oral Biol. 2011 Jul;56(7):650-4 - PubMed
  10. Antonie Van Leeuwenhoek. 2011 Nov;100(4):631-7 - PubMed
  11. Int J Syst Evol Microbiol. 2012 Mar;62(Pt 3):716-21 - PubMed
  12. J Antibiot (Tokyo). 2012 Aug;65(8):385-95 - PubMed
  13. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  14. Int J Syst Evol Microbiol. 2014 Sep;64(Pt 9):3297-306 - PubMed
  15. Appl Environ Microbiol. 2014 Dec;80(23):7258-65 - PubMed
  16. J Antibiot (Tokyo). 2015 Jul;68(7):445-52 - PubMed
  17. Int J Syst Evol Microbiol. 2015 Oct;65(10):3493-500 - PubMed
  18. Biochem Res Int. 2016;2016:8086762 - PubMed
  19. Front Microbiol. 2016 Mar 18;7:347 - PubMed
  20. Curr Microbiol. 2017 Mar;74(3):334-343 - PubMed
  21. J Antibiot (Tokyo). 2017 May;70(5):506-513 - PubMed
  22. Molecules. 2017 Jul 04;22(7):null - PubMed
  23. PLoS One. 2018 May 24;13(5):e0198145 - PubMed
  24. J Antibiot (Tokyo). 1988 Dec;41(12):1758-62 - PubMed
  25. Antimicrob Agents Chemother. 1972 Jul;2(1):23-8 - PubMed
  26. Am J Clin Pathol. 1966 Apr;45(4):493-6 - PubMed
  27. Experientia. 1964 Feb 15;20(2):83-4 - PubMed
  28. J Clin Microbiol. 1982 Sep;16(3):584-6 - PubMed

Publication Types