Display options
Share it on

ACS Med Chem Lett. 2018 Nov 19;9(12):1280-1284. doi: 10.1021/acsmedchemlett.8b00468. eCollection 2018 Dec 13.

Cystine-based MBioF for Maintaining the Antioxidant-Oxidant Balance in Airway Diseases.

ACS medicinal chemistry letters

Marek Wiśniewski, Adam Bieniek, Katarzyna Roszek, Joanna Czarnecka, Paulina Bolibok, Pilar Ferrer, Ivan da Silva, Artur P Terzyk

Affiliations

  1. Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toru?, Gagarin Street 7, 87-100 Toru?, Poland.
  2. Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toru?, Lwowska 1, 87-100 Toru?, Poland.
  3. Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Chilton, OX11 0DE, U.K.
  4. ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, R3 UG.15, Harwell Campus, Didcot, OX11 0QX, U.K.

PMID: 30613340 PMCID: PMC6295858 DOI: 10.1021/acsmedchemlett.8b00468

Abstract

Reactive oxygen species, contributing to oxidant-antioxidant imbalance, initiate damage to the airways cells, inflammatory processes, and further pathophysiological effects. Enhancing antioxidant properties is the main prophylactic and therapeutic challenge. In this work, a newly synthesized and biocompatible structure of the metal-biomolecule frameworks (MBioF) harnessing cystine as a linker and magnesium as metal nodes is presented. This structure provides crucial sulfhydryl groups of cysteine, with antioxidant activity, released stepwise in the site of delivery. We prove that once released, the compounds of MBioF increase the intracellular level of cysteine and total antioxidative capability of airway cells. Presented MBioF structures offer new perspectives for clinical applications as therapeutics or preventatives maintaining the antioxidant-oxidant balance.

Conflict of interest statement

The authors declare no competing financial interest.

References

  1. J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):342-6 - PubMed
  2. Redox Rep. 2005;10(5):247-55 - PubMed
  3. Clin Occup Environ Med. 2006;5(4):817-36 - PubMed
  4. J Synchrotron Radiat. 2007 Jan;14(Pt 1):73-83 - PubMed
  5. J Clin Invest. 2007 Sep;117(9):2592-601 - PubMed
  6. Antioxid Redox Signal. 2008 Mar;10(3):445-73 - PubMed
  7. J Am Chem Soc. 2008 Feb 27;130(8):2517-26 - PubMed
  8. Antioxid Redox Signal. 2008 Sep;10(9):1515-26 - PubMed
  9. Ther Adv Respir Dis. 2008 Aug;2(4):215-35 - PubMed
  10. J Synchrotron Radiat. 2009 Mar;16(Pt 2):163-72 - PubMed
  11. J Colloid Interface Sci. 2009 Jun 1;334(1):1-7 - PubMed
  12. Expert Rev Respir Med. 2008 Oct;2(5):617-29 - PubMed
  13. Biochemistry. 1990 Dec 11;29(49):10978-89 - PubMed
  14. Chem Commun (Camb). 2011 Jul 14;47(26):7287-302 - PubMed
  15. Antioxid Redox Signal. 2012 Jul 15;17(2):375-408 - PubMed
  16. Biochim Biophys Acta. 2014 Feb;1840(2):847-75 - PubMed
  17. Science. 2013 Aug 30;341(6149):1230444 - PubMed
  18. Pharmacol Ther. 2014 Feb;141(2):150-9 - PubMed
  19. Medicine (Baltimore). 2016 May;95(19):e3629 - PubMed
  20. Cell J. 2017 Apr-Jun;19(1):11-17 - PubMed
  21. Clin Sci (Lond). 1993 Apr;84(4):407-12 - PubMed
  22. Free Radic Biol Med. 1996;20(7):933-56 - PubMed

Publication Types