Display options
Share it on

Front Aging Neurosci. 2019 Jan 18;10:430. doi: 10.3389/fnagi.2018.00430. eCollection 2018.

Age Related Decline in Cortical Multifocal Flash VEP: Latency Increases Shown to Be Predominately Magnocellular.

Frontiers in aging neuroscience

Alyse Brown, Molly Corner, David Crewther, Sheila Crewther

Affiliations

  1. School of Psychological Science and Public Health, La Trobe University, Melbourne, VIC, Australia.
  2. Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.

PMID: 30713495 PMCID: PMC6345711 DOI: 10.3389/fnagi.2018.00430

Abstract

As the visual system ages, flicker sensitivity decreases and the latencies of cortical visual evoked potentials (VEP) increase. However, the extent to which these effects reflect age-related changes in the magnocellular (M) and or parvocellular (P) pathways remain unclear. Here, we investigated the relation between flicker fusion frequencies and VEP non-linearities induced by rapid stimulation, as a function of age over 6 decades. The approach, using Wiener kernel analysis of multifocal flash (mf)VEP, allows the extraction of signatures of both M and P processing and hence establishing a neural basis of the known decline in flicker fusion threshold. We predicted that, in a sample of 86 participants, age would be associated with a latency increase in early mfVEP response components and that flicker fusion thresholds, for both low and high contrast stimuli, would relate to the temporal efficiency of the M-generated VEP component amplitudes. As expected, flicker fusion frequency reduced with age, while latencies of early second order peaks of the mfVEP increased with age, but M temporal efficiency (amplitude ratio of first to second order peaks) was not strongly age-related. The steepest increases in latency were associated with the M dominated K2.1 (second order first slice) N70 components recorded at low and high contrast (6.7 and 5.9 ms/decade, respectively). Interestingly, significant age-related latency shifts were not observed in the first order responses. Significant decreases in amplitude were found in multiple first and second order components up to 30 years of age, after which they remained relatively constant. Thus, aging and decline in visual function appears to be most closely related to the response latencies of non-linearities generated by the M pathway.

Keywords: aging (aging); flicker fusion; magnocellular; neural efficiency; non-linear dynamics; visual evoked potential (VEP)

References

  1. Doc Ophthalmol. 2000;100(2-3):115-37 - PubMed
  2. Doc Ophthalmol. 2000;100(2-3):49-75 - PubMed
  3. Jpn J Ophthalmol. 2002 May-Jun;46(3):261-9 - PubMed
  4. J Exp Psychol. 1958 Dec;56(6):529-38 - PubMed
  5. J Neurocytol. 2002 Sep-Nov;31(8-9):581-93 - PubMed
  6. Vision Res. 1992 Jul;32(7):1199-209 - PubMed
  7. Annu Rev Neurosci. 2004;27:307-40 - PubMed
  8. Acta Ophthalmol Scand. 2004 Dec;82(6):701-6 - PubMed
  9. Cereb Cortex. 2005 Apr;15(4):403-8 - PubMed
  10. Invest Ophthalmol Vis Sci. 1992 Jan;33(1):1-17 - PubMed
  11. Brain Res Rev. 2007 Aug;55(1):78-88 - PubMed
  12. Eur J Neurosci. 2008 Jul;28(1):201-7 - PubMed
  13. Neuroscience. 2008 Oct 15;156(3):748-57 - PubMed
  14. Nat Rev Neurosci. 2009 May;10(5):360-72 - PubMed
  15. Brain Res. 2009 Jun 5;1274:21-7 - PubMed
  16. Doc Ophthalmol. 2010 Feb;120(1):111-9 - PubMed
  17. Psychol Aging. 2010 Mar;25(1):219-28 - PubMed
  18. Brain. 2010 Jul;133(Pt 7):2089-97 - PubMed
  19. Vision Res. 2011 Jul 1;51(13):1610-22 - PubMed
  20. J Neurosci. 1990 Jul;10(7):2223-37 - PubMed
  21. PLoS One. 2011;6(12):e28214 - PubMed
  22. J Comp Neurol. 1990 Oct 1;300(1):5-25 - PubMed
  23. PLoS One. 2013 Jun 18;8(6):e66797 - PubMed
  24. Electroencephalogr Clin Neurophysiol. 1987 May;68(3):161-71 - PubMed
  25. Multivariate Behav Res. 1988 Apr 1;23(2):189-202 - PubMed
  26. J Vis. 2016;16(1):15 - PubMed
  27. J Opt Soc Am A. 1989 Apr;6(4):481-90 - PubMed
  28. Front Aging Neurosci. 2017 Mar 22;9:62 - PubMed
  29. Nat Commun. 2017 Jun 09;8:15671 - PubMed
  30. Front Hum Neurosci. 2018 May 14;12:176 - PubMed
  31. J Physiol. 1984 Dec;357:241-65 - PubMed
  32. Vision Res. 1981;21(8):1279-86 - PubMed
  33. Electroencephalogr Clin Neurophysiol. 1994 Mar;92(2):126-39 - PubMed
  34. Electroencephalogr Clin Neurophysiol. 1994 Mar;92(2):93-101 - PubMed
  35. Electroencephalogr Clin Neurophysiol. 1993 Jan-Feb;88(1):12-9 - PubMed
  36. J Neurophysiol. 1994 Jul;72(1):402-20 - PubMed
  37. J Opt Soc Am A Opt Image Sci Vis. 1994 Jul;11(7):1958-69 - PubMed
  38. Vision Res. 1993 May;33(7):939-46 - PubMed
  39. Vision Res. 1997 Aug;37(15):2161-9 - PubMed
  40. J Neurophysiol. 1998 Jun;79(6):3272-8 - PubMed

Publication Types