Display options
Share it on

ACS Nano. 2019 Mar 26;13(3):2948-2955. doi: 10.1021/acsnano.8b07280. Epub 2019 Feb 13.

Microwave Radiation Detection with an Ultrathin Free-Standing Superconducting Niobium Nanohelix.

ACS nano

Sören Lösch, Alexey Alfonsov, Oleksandr V Dobrovolskiy, Robert Keil, Vivienne Engemaier, Stefan Baunack, Guodong Li, Oliver G Schmidt, Danilo Bürger

Affiliations

  1. Material Systems for Nanoelectronics , Chemnitz University of Technology , Reichenhainer Strasse 70 , 09107 Chemnitz , Germany.
  2. Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstrasse 20 , 01069 Dresden , Germany.
  3. Institute for Solid State Research , Leibniz IFW Dresden , Helmholtzstrasse 20 , 01069 Dresden , Germany.
  4. Institute of Physics , Goethe University , Max-von-Laue-Strasse 1 , 60438 Frankfurt am Main , Germany.
  5. Physics Department , V. Karazin National University , Svobody Sq. 4 , Kharkiv 61077 , Ukraine.

PMID: 30715846 DOI: 10.1021/acsnano.8b07280

Abstract

We present a superconducting bolometer fabricated by a rolled-up technology that allows one to combine the two-dimensionality (2D) of the superconducting layer with a helical spiral curvature. The bolometer is formed as a free-standing Nb nanohelix acting as an ultrathin transition-edge sensor (TES) and having a negligible thermal contact to the substrate. We demonstrate the functionality of the thin-film TES by examining its microwave-detection performance in comparison with a commercial cryogenic bolometer from QMC Instruments. The nanohelix has been revealed to feature a noise equivalent power (NEP) of about 2 × 10

Keywords: bolometer; free-standing; rolled-up nanohelix; superconducting niobium; transition-edge sensor

Publication Types