Display options
Share it on

Eur J Transl Myol. 2018 Dec 13;28(4):7931. doi: 10.4081/ejtm.2018.7931. eCollection 2018 Nov 02.

Do neurogenic and cancer-induced muscle atrophy follow common or divergent paths?.

European journal of translational myology

Marina Bouchè, Biliana Lozanoska-Ochser, Daisy Proietti, Luca Madaro

Affiliations

  1. DAHFMO, Unit of Histology, Sapienza University of Rome, 00161 Rome, Italy.
  2. Interuniversity Institute of Myology, Italy.
  3. IRCCS, Fondazione Santa Lucia, Rome, Italy.

PMID: 30662704 PMCID: PMC6317130 DOI: 10.4081/ejtm.2018.7931

Abstract

Skeletal muscle is a dynamic tissue capable of responding to a large variety of physiological stimuli by adjusting muscle fiber size, metabolism and function. However, in pathological conditions such as cancer and neural disorders, this finely regulated homeostasis is impaired leading to severe muscle wasting, reduced muscle fiber size (atrophy), and impaired function. These disease features develop due to enhanced protein breakdown, which relies on two major degradation systems: the ubiquitin-proteasome and the autophagy-lysosome. These systems are independently regulated by different signalling pathways, which in physiological conditions, determine protein and organelle turnover. However, alterations in one or both systems, as it happens in several disorders, leads to enhanced protein breakdown and muscle atrophy. Although this is a common feature in the different types of muscle atrophy, the relative contribution of each of these systems is still under debate. Here, we will briefly describe the regulation and the activity of the ubiquitin-proteasome and the autophagy-lysosome systems during muscle wasting. We will then discuss what we know regarding how these pathways are involved in cancer induced and in neurogenic muscle atrophy, highlighting common and divergent paths. It is now clear that there is no one unifying common mechanism that can be applied to all models of muscle loss. Detailed understanding of the pathways and proteolysis mechanisms involved in each model will hopefully help the development of drugs to counteract muscle wasting in specific conditions.

Keywords: autophagy; cancer cachexia; muscle atrophy; neurogenic muscle atrophy; ubiquitin-proteasome

Conflict of interest statement

Conflict of Interest None of the authors have conflicts of interests.

References

  1. Science. 2001 Nov 23;294(5547):1704-8 - PubMed
  2. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14440-5 - PubMed
  3. Ann Surg. 2003 Mar;237(3):384-9 - PubMed
  4. FASEB J. 2004 Jan;18(1):39-51 - PubMed
  5. Cell. 2004 Apr 30;117(3):399-412 - PubMed
  6. Cell. 2004 Oct 15;119(2):285-98 - PubMed
  7. J Biol Chem. 2005 Jan 28;280(4):2847-56 - PubMed
  8. J Biol Chem. 2005 Jan 28;280(4):2737-44 - PubMed
  9. Int J Biochem Cell Biol. 2005 Oct;37(10):1974-84 - PubMed
  10. Int J Biochem Cell Biol. 2005 Oct;37(10):2196-206 - PubMed
  11. Br J Cancer. 2005 Oct 3;93(7):774-80 - PubMed
  12. J Physiol. 2005 Dec 1;569(Pt 2):489-99 - PubMed
  13. Am J Physiol Regul Integr Comp Physiol. 2006 Sep;291(3):R674-83 - PubMed
  14. Cell. 2006 Jun 2;125(5):987-1001 - PubMed
  15. J Clin Invest. 2006 Nov;116(11):2945-54 - PubMed
  16. FASEB J. 2007 Jan;21(1):140-55 - PubMed
  17. Lancet Oncol. 2006 Dec;7(12):1017-26 - PubMed
  18. J Mol Med (Berl). 2007 Jun;85(6):647-54 - PubMed
  19. J Biol Chem. 2007 Oct 12;282(41):30107-19 - PubMed
  20. Crit Care Med. 2007 Sep;35(9 Suppl):S602-8 - PubMed
  21. J Clin Invest. 2007 Sep;117(9):2486-95 - PubMed
  22. Cell Metab. 2007 Nov;6(5):376-85 - PubMed
  23. Cell Metab. 2007 Dec;6(6):458-71 - PubMed
  24. Autophagy. 2008 May;4(4):524-6 - PubMed
  25. Am J Physiol Cell Physiol. 2008 Oct;295(4):C986-93 - PubMed
  26. Cell Metab. 2008 Nov;8(5):425-36 - PubMed
  27. Autophagy. 2009 Feb;5(2):230-1 - PubMed
  28. PLoS One. 2009;4(3):e4973 - PubMed
  29. Am J Physiol Cell Physiol. 2009 Jun;296(6):C1248-57 - PubMed
  30. J Cell Biol. 2009 Jun 15;185(6):1083-95 - PubMed
  31. Cell Metab. 2009 Dec;10(6):507-15 - PubMed
  32. J Biol Chem. 2010 Jun 18;285(25):19460-71 - PubMed
  33. Curr Top Microbiol Immunol. 2010;346:267-78 - PubMed
  34. Cell. 2010 Oct 1;143(1):35-45 - PubMed
  35. J Cell Biol. 2010 Oct 4;191(1):101-13 - PubMed
  36. Nat Med. 2010 Nov;16(11):1313-20 - PubMed
  37. J Cell Biol. 2010 Dec 27;191(7):1395-411 - PubMed
  38. J Cell Physiol. 2012 Apr;227(4):1569-76 - PubMed
  39. Skelet Muscle. 2011 Jan 24;1(1):4 - PubMed
  40. J Physiol. 2011 Oct 1;589(Pt 19):4759-76 - PubMed
  41. Mol Endocrinol. 2011 Nov;25(11):1936-49 - PubMed
  42. Autophagy. 2011 Dec;7(12):1415-23 - PubMed
  43. Am J Physiol Cell Physiol. 2012 Feb 1;302(3):C587-96 - PubMed
  44. FASEB J. 2012 Mar;26(3):987-1000 - PubMed
  45. Mol Cell Biol. 2012 Apr;32(7):1248-59 - PubMed
  46. Curr Opin Clin Nutr Metab Care. 2012 May;15(3):233-9 - PubMed
  47. FASEB J. 2012 Jul;26(7):2986-99 - PubMed
  48. Autophagy. 2012 Oct;8(10):1548-51 - PubMed
  49. Age (Dordr). 2013 Oct;35(5):1663-74 - PubMed
  50. J Biol Chem. 2013 Jan 11;288(2):1125-34 - PubMed
  51. Dis Model Mech. 2013 Jan;6(1):25-39 - PubMed
  52. BMC Biol. 2013 Feb 01;11:12 - PubMed
  53. FASEB J. 2013 May;27(5):1990-2000 - PubMed
  54. Am J Pathol. 2013 Apr;182(4):1367-78 - PubMed
  55. Am J Clin Nutr. 2013 Sep;98(3):738-48 - PubMed
  56. J Biol Chem. 2013 Oct 18;288(42):30515-26 - PubMed
  57. Nat Genet. 2013 Nov;45(11):1309-18 - PubMed
  58. Am J Clin Nutr. 2013 Dec;98(6):1485-92 - PubMed
  59. Autophagy. 2014 Jan;10(1):123-36 - PubMed
  60. Biol Open. 2013 Dec 15;2(12):1346-53 - PubMed
  61. PLoS Curr. 2013 Nov 22;5:null - PubMed
  62. Cancers (Basel). 2012 Nov 29;4(4):1247-51 - PubMed
  63. PLoS One. 2014 Jan 03;9(1):e83618 - PubMed
  64. Dis Model Mech. 2014 Apr;7(4):471-81 - PubMed
  65. Curr Opin Clin Nutr Metab Care. 2014 May;17(3):241-6 - PubMed
  66. Sci Signal. 2014 Feb 25;7(314):ra18 - PubMed
  67. J Cell Physiol. 2014 Nov;229(11):1660-72 - PubMed
  68. Cancer Discov. 2014 Aug;4(8):914-27 - PubMed
  69. Front Aging Neurosci. 2014 Jul 24;6:188 - PubMed
  70. BMC Cancer. 2014 Dec 24;14:997 - PubMed
  71. Oncol Rep. 2015 May;33(5):2261-8 - PubMed
  72. Skelet Muscle. 2015 Mar 18;5:9 - PubMed
  73. Nat Commun. 2015 Apr 10;6:6670 - PubMed
  74. Cell Cycle. 2015;14(13):2011-7 - PubMed
  75. J Cachexia Sarcopenia Muscle. 2015 Mar;6(1):53-61 - PubMed
  76. Free Radic Biol Med. 2016 Sep;98:218-230 - PubMed
  77. Autophagy. 2016;12(1):1-222 - PubMed
  78. Eur J Transl Myol. 2015 Aug 25;25(4):221-30 - PubMed
  79. Stem Cells Int. 2016;2016:6729268 - PubMed
  80. Sci Rep. 2016 May 31;6:26991 - PubMed
  81. Cell Death Differ. 2016 Nov 1;23(11):1839-1849 - PubMed
  82. Eur J Transl Myol. 2016 Jun 13;26(2):5958 - PubMed
  83. J Cachexia Sarcopenia Muscle. 2016 May;7(2):225-32 - PubMed
  84. Autophagy. 2016 Dec;12(12):2484-2495 - PubMed
  85. Eur J Transl Myol. 2017 Mar 03;27(1):6406 - PubMed
  86. Skelet Muscle. 2018 Feb 24;8(1):6 - PubMed
  87. Eur J Transl Myol. 2018 Mar 23;28(1):7278 - PubMed
  88. Sci Rep. 2018 Jun 14;8(1):9101 - PubMed
  89. Sci Rep. 2018 Aug 7;8(1):11818 - PubMed
  90. Eur J Transl Myol. 2018 Aug 23;28(3):7687 - PubMed

Publication Types