Display options
Share it on

Oncoimmunology. 2019 Jan 11;8(3):1558663. doi: 10.1080/2162402X.2018.1558663. eCollection 2019.

Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity.

Oncoimmunology

Nadia Mensali, Amalie Grenov, Niladri Bhusan Pati, Pierre Dillard, Marit Renée Myhre, Gustav Gaudernack, Gunnar Kvalheim, Else Marit Inderberg, Oddmund Bakke, Sébastien Wälchli

Affiliations

  1. Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
  2. Department of Molecular Biosciences, University of Oslo, Oslo, Norway.
  3. Centre for Immune Regulation, University of Oslo, Oslo, Norway.
  4. Department of Cancer Immunology, Institute for cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.

PMID: 30723591 PMCID: PMC6350688 DOI: 10.1080/2162402X.2018.1558663

Abstract

Eradication of tumors by the immune system relies on the efficient activation of a T-cell response. For many years, the main focus of cancer immunotherapy has been on cytotoxic CD8 T-cell. However, stimulation of CD4 helper T cells is critical for the promotion and maintenance of immune memory, thus a good vaccine should evoke a two-dimensional T-cell response. The invariant chain (Ii) is required for the MHC class II heterodimer to be correctly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells (APC). We previously showed that by replacing the Ii CLIP peptide by an MHC-I cancer peptide, we could efficiently load MHC-I. This prompted us to test whether longer cancer peptides could be loaded on both MHC classes and whether such peptides could be accommodated in the CLIP region of Ii. We here present data showing that expanding the CLIP replacement size leads to T-cell activation. We demonstrate by using long peptides that APCs can present peptides from the same Ii molecule on both MHC-I and -II. In addition, we present evidence that antigen presentation after Ii-loading was superior to an ER-targeted minigene construct, suggesting that ER-localization was not sufficient to obtain efficient MHC-II loading. Finally, we verified that Ii-expressing dendritic cells could prime CD4

Keywords: T cells; TCR; Vaccines; dendritic cells; invariant chain

References

  1. Int Immunol. 2000 Nov;12(11):1561-8 - PubMed
  2. Cell Immunol. 2000 Nov 1;205(2):73-83 - PubMed
  3. Int J Cancer. 2001 Jul 1;93(1):6-11 - PubMed
  4. Blood. 2001 Jul 1;98(1):49-56 - PubMed
  5. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13255-60 - PubMed
  6. Cancer Immunol Immunother. 2001 Nov;50(9):469-76 - PubMed
  7. J Immunol. 2002 Apr 1;168(7):3145-9 - PubMed
  8. Int Immunol. 2003 Nov;15(11):1291-9 - PubMed
  9. Eur J Immunol. 2004 Feb;34(2):398-407 - PubMed
  10. Cancer Immunol Immunother. 2006 Aug;55(8):1011-6 - PubMed
  11. FEBS Lett. 2006 May 29;580(13):3112-6 - PubMed
  12. Blood. 2006 Dec 15;108(13):4009-17 - PubMed
  13. Clin Cancer Res. 2007 Nov 1;13(21):6386-95 - PubMed
  14. J Immunol. 2008 Jan 1;180(1):309-18 - PubMed
  15. Clin Cancer Res. 2009 Jan 1;15(1):169-80 - PubMed
  16. Eur J Immunol. 2010 Apr;40(4):976-85 - PubMed
  17. J Exp Med. 2010 Oct 25;207(11):2469-77 - PubMed
  18. Cancer Res. 2010 Nov 1;70(21):8368-77 - PubMed
  19. J Clin Oncol. 2011 Jul 20;29(21):2924-32 - PubMed
  20. Nat Rev Immunol. 2011 Nov 11;11(12):823-36 - PubMed
  21. PLoS One. 2011;6(11):e27930 - PubMed
  22. J Immunol. 2012 Jan 15;188(2):686-93 - PubMed
  23. Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21182-7 - PubMed
  24. Nat Immunol. 2012 Feb 05;13(3):237-45 - PubMed
  25. Annu Rev Immunol. 2013;31:443-73 - PubMed
  26. Eur J Immunol. 2014 Mar;44(3):774-84 - PubMed
  27. Curr Opin Immunol. 2014 Feb;26:115-22 - PubMed
  28. Oncoimmunology. 2014 Jan 1;3(1):e27529 - PubMed
  29. PLoS One. 2015 Apr 13;10(4):e0119559 - PubMed
  30. Nature. 2015 Apr 30;520(7549):692-6 - PubMed
  31. Immunol Cell Biol. 2016 Nov;94(10):964-974 - PubMed
  32. Sci Rep. 2016 Nov 07;6:36617 - PubMed
  33. Annu Rev Immunol. 2017 Apr 26;35:149-176 - PubMed
  34. Oncoimmunology. 2017 Mar 17;6(4):e1302631 - PubMed
  35. Trends Immunol. 2017 Aug;38(8):577-593 - PubMed
  36. Nature. 2017 Jul 13;547(7662):217-221 - PubMed
  37. Nature. 2017 Jul 13;547(7662):222-226 - PubMed
  38. Oncoimmunology. 2017 May 12;6(7):e1328341 - PubMed
  39. Am J Cancer Res. 2017 Oct 01;7(10):2091-2102 - PubMed
  40. Cancer Immunol Res. 2018 Sep;6(9):1025-1038 - PubMed
  41. Nat Rev Immunol. 2018 Oct;18(10):635-647 - PubMed
  42. J Cell Sci. 1994 Jul;107 ( Pt 7):2021-32 - PubMed
  43. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8581-5 - PubMed
  44. J Immunol. 1996 Nov 15;157(10):4503-10 - PubMed
  45. Hum Gene Ther. 1997 May 1;8(7):875-91 - PubMed
  46. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6886-91 - PubMed
  47. Eur J Immunol. 1998 May;28(5):1524-33 - PubMed
  48. Hum Immunol. 1998 Oct;59(10):607-14 - PubMed

Publication Types