Display options
Share it on

J Phys Chem C Nanomater Interfaces. 2017 Nov 22;121(46):25994-25999. doi: 10.1021/acs.jpcc.7b10549. Epub 2017 Nov 01.

Imaging of Biomolecular NMR Signals Amplified by Reversible Exchange with Parahydrogen Inside an MRI Scanner.

The journal of physical chemistry. C, Nanomaterials and interfaces

Kirill V Kovtunov, Bryce E Kidd, Oleg G Salnikov, Liana B Bales, Max E Gemeinhardt, Jonathan Gesiorski, Roman V Shchepin, Eduard Y Chekmenev, Boyd M Goodson, Igor V Koptyug

Affiliations

  1. International Tomography Center SB RAS, Novosibirsk, 630090, Russia.
  2. Novosibirsk State University, Novosibirsk, 630090, Russia.
  3. Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA.
  4. Vanderbilt Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  5. Russian Academy of Sciences, Moscow, 119991, Russia.
  6. Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA.

PMID: 30701013 PMCID: PMC6349396 DOI: 10.1021/acs.jpcc.7b10549

Abstract

The Signal Amplification by Reversible Exchange (SABRE) technique employs exchange with singlet-state parahydrogen to efficiently generate high levels of nuclear spin polarization. Spontaneous SABRE has been shown previously to be efficient in the milli-Tesla and micro-Tesla regimes. We have recently demonstrated that high-field SABRE is also possible, where proton sites of molecules that are able to reversibly coordinate to a metal center can be hyperpolarized directly within high-field magnets, potentially offering the convenience of

References

  1. J Magn Reson. 2002 Apr;155(2):157-216 - PubMed
  2. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63 - PubMed
  3. Cancer Res. 2006 Nov 15;66(22):10855-60 - PubMed
  4. Inorg Chem. 2009 Jan 19;48(2):663-70 - PubMed
  5. Contrast Media Mol Imaging. 2009 Jan-Feb;4(1):1-23 - PubMed
  6. Science. 2009 Mar 27;323(5922):1708-11 - PubMed
  7. J Am Chem Soc. 2009 Sep 23;131(37):13362-8 - PubMed
  8. Phys Chem Chem Phys. 2010 Jun 14;12(22):5818-23 - PubMed
  9. J Am Chem Soc. 2011 Apr 27;133(16):6134-7 - PubMed
  10. Phys Med. 2013 Jan;29(1):3-16 - PubMed
  11. J Magn Reson. 2011 Dec;213(2):533-41 - PubMed
  12. Prog Nucl Magn Reson Spectrosc. 2012 Nov;67:1-48 - PubMed
  13. Top Curr Chem. 2013;338:33-74 - PubMed
  14. Sci Transl Med. 2013 Aug 14;5(198):198ra108 - PubMed
  15. Nat Commun. 2013;4:2411 - PubMed
  16. Inorg Chem. 2013 Dec 2;52(23):13453-61 - PubMed
  17. J Am Chem Soc. 2014 Mar 5;136(9):3322-5 - PubMed
  18. J Magn Reson. 2014 Apr;241:18-31 - PubMed
  19. Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7495-8 - PubMed
  20. J Magn Reson. 2014 Nov;248:23-6 - PubMed
  21. Chem Commun (Camb). 2015 Feb 14;51(13):2506-9 - PubMed
  22. Chemphyschem. 2014 Dec 15;15(18):4100-7 - PubMed
  23. J Phys Chem B. 2014 Dec 4;118(48):13882-9 - PubMed
  24. Chemistry. 2015 Feb 16;21(8):3156-66 - PubMed
  25. J Am Chem Soc. 2015 Feb 4;137(4):1404-7 - PubMed
  26. Sci Rep. 2015 Mar 16;5:9104 - PubMed
  27. J Phys Chem C Nanomater Interfaces. 2015 Apr 23;119(16):8786-8797 - PubMed
  28. J Magn Reson. 2016 Mar;264:3-12 - PubMed
  29. J Magn Reson. 2016 Mar;264:39-48 - PubMed
  30. Bioconjug Chem. 2016 Apr 20;27(4):878-82 - PubMed
  31. Sci Adv. 2016 Mar 25;2(3):e1501438 - PubMed
  32. J Am Chem Soc. 2016 Jul 6;138(26):8080-3 - PubMed
  33. ACS Sens. 2016 Jun 24;1(6):640-644 - PubMed
  34. Chemistry. 2017 Jan 18;23(4):725-751 - PubMed
  35. Nat Commun. 2017 Mar 06;8:14535 - PubMed
  36. J Phys Chem C Nanomater Interfaces. 2017 Mar 2;121(8):4481-4487 - PubMed
  37. Magn Reson Med. 2018 Feb;79(2):741-747 - PubMed
  38. Chemphyschem. 2017 Jun 20;18(12):1493-1498 - PubMed
  39. Chemphyschem. 2017 Aug 5;18(15):1961-1965 - PubMed
  40. J Phys Chem Lett. 2017 Jul 6;8(13):3008-3014 - PubMed
  41. Chemistry. 2017 Aug 4;23(44):10496-10500 - PubMed
  42. Angew Chem Int Ed Engl. 2017 Aug 21;56(35):10433-10437 - PubMed

Publication Types

Grant support