Display options
Share it on

Proteomics. 2019 Apr;19(8):e1800167. doi: 10.1002/pmic.201800167. Epub 2019 Apr 02.

Protein Composition Reflects Extracellular Vesicle Heterogeneity.

Proteomics

Tatyana Vagner, Andrew Chin, Javier Mariscal, Serguei Bannykh, David M Engman, Dolores Di Vizio

Affiliations

  1. Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
  2. Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
  3. Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
  4. Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
  5. Department of Medicine, University of California, Los Angeles, CA, 90095, USA.

PMID: 30793499 PMCID: PMC7521840 DOI: 10.1002/pmic.201800167

Abstract

Extracellular vesicles (EVs) are membrane-enclosed particles that are released by virtually all cells from all living organisms. EVs shuttle biologically active cargo including protein, RNA, and DNA between cells. When shed by cancer cells, they function as potent intercellular messangers with important functional consequences. Cells produce a diverse spectrum of EVs, spanning from small vesicles of 40-150 nm in diameter, to large vesicles up to 10 μm in diameter. While this diversity was initially considered to be purely based on size, it is becoming evident that different classes of EVs, and different populations within one EV class may harbor distinct molecular cargo and play specific functions. Furthermore, there are considerable cell type-dependent differences in the cargo and function of shed EVs. This review focuses on the most recent proteomic studies that have attempted to capture the EV heterogeneity by directly comparing the protein composition of different EV classes and EV populations derived from the same cell source. Recent studies comparing protein composition of the same EV class(es) derived from different cell types are also summarized. Emerging approaches to study EV heterogeneity and their important implications for future studies are also discussed.

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: biomarkers; cancer; extracellular vesicles; heterogeneity; protein profiling

References

  1. Mol Cell Proteomics. 2013 Mar;12(3):587-98 - PubMed
  2. Sci Rep. 2017 Jul 7;7(1):4901 - PubMed
  3. Biochim Biophys Acta. 2012 Dec;1821(12):1501-7 - PubMed
  4. Gastroenterology. 2001 Aug;121(2):337-49 - PubMed
  5. Curr Biol. 2011 Dec 6;21(23):R940-1 - PubMed
  6. Curr Opin Cell Biol. 2014 Aug;29:116-25 - PubMed
  7. J Extracell Vesicles. 2013 Sep 12;2: - PubMed
  8. Bioscience. 2015 Aug 1;65(8):783-797 - PubMed
  9. Cancer Res. 2009 Jul 1;69(13):5601-9 - PubMed
  10. ACS Nano. 2018 Jan 23;12(1):494-503 - PubMed
  11. Nat Cell Biol. 2008 Dec;10(12):1470-6 - PubMed
  12. J Extracell Vesicles. 2016 Nov 17;5:32570 - PubMed
  13. JCI Insight. 2016 Nov 17;1(19):e89631 - PubMed
  14. Curr Biol. 2009 Dec 1;19(22):1875-85 - PubMed
  15. J Proteome Res. 2018 Mar 2;17(3):1101-1107 - PubMed
  16. Toxicol Pathol. 2007 Jun;35(4):495-516 - PubMed
  17. Eur J Cancer. 2017 Jan;70:122-132 - PubMed
  18. EMBO Mol Med. 2012 Aug;4(8):743-60 - PubMed
  19. Oncogene. 2004 Jan 29;23(4):956-63 - PubMed
  20. Clin Transl Med. 2018 May 31;7(1):14 - PubMed
  21. J Extracell Vesicles. 2014 Dec 22;3:26913 - PubMed
  22. Biochem Biophys Res Commun. 2016 Sep 9;478(1):168-173 - PubMed
  23. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4852-7 - PubMed
  24. Nat Cell Biol. 2018 Mar;20(3):332-343 - PubMed
  25. Sci Rep. 2016 Oct 21;6:35562 - PubMed
  26. Biochem Biophys Res Commun. 2018 Apr 30;499(1):37-43 - PubMed
  27. Cell Res. 2014 Jun;24(6):766-9 - PubMed
  28. Genes Dev. 2012 Jun 15;26(12):1287-99 - PubMed
  29. Nature. 2015 Nov 19;527(7578):329-35 - PubMed
  30. J Biol Chem. 2014 Feb 14;289(7):3869-75 - PubMed
  31. Cancer Res. 2017 May 1;77(9):2306-2317 - PubMed
  32. Mol Cell Proteomics. 2013 Feb;12(2):343-55 - PubMed
  33. Cancer Lett. 2009 Oct 8;283(2):168-75 - PubMed
  34. RNA Biol. 2017 Mar 4;14(3):305-316 - PubMed
  35. Nat Cell Biol. 2007 Jun;9(6):654-9 - PubMed
  36. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77 - PubMed
  37. Oncotarget. 2016 Aug 8;8(32):52237-52255 - PubMed
  38. Blood Cells Mol Dis. 2005 Sep-Oct;35(2):89-93 - PubMed
  39. Oncotarget. 2016 Dec 27;7(52):86999-87015 - PubMed
  40. Oncotarget. 2015 May 10;6(13):11327-41 - PubMed
  41. Methods. 2015 Oct 1;87:11-25 - PubMed
  42. Nat Commun. 2011 Feb 01;2:180 - PubMed
  43. Oncotarget. 2015 Jun 20;6(17):15375-96 - PubMed
  44. Oncogene. 2012 Nov 8;31(45):4740-9 - PubMed
  45. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 - PubMed
  46. Br J Cancer. 2005 Jan 31;92(2):209-11 - PubMed
  47. Nat Cell Biol. 2008 May;10(5):619-24 - PubMed
  48. Nat Med. 2012 Jun;18(6):883-91 - PubMed
  49. J Clin Invest. 2016 Apr 1;126(4):1152-62 - PubMed
  50. . 2013 Nov 15;12(22):3526-36 - PubMed
  51. J Transl Med. 2011 Jan 14;9:9 - PubMed
  52. ACS Nano. 2018 Jan 23;12(1):671-680 - PubMed
  53. Am J Pathol. 2012 Nov;181(5):1573-84 - PubMed
  54. J Mammary Gland Biol Neoplasia. 2018 Sep;23(3):165-176 - PubMed
  55. Matrix Biol. 2019 Apr;77:41-57 - PubMed
  56. Annu Rev Cell Dev Biol. 2014;30:255-89 - PubMed
  57. J Extracell Vesicles. 2013 May 27;2: - PubMed
  58. Cell. 2015 May 21;161(5):1046-1057 - PubMed
  59. Mol Cells. 2018 Mar 31;41(3):179-187 - PubMed
  60. Methods. 2015 Oct 1;87:83-95 - PubMed
  61. J Proteomics. 2011 Sep 6;74(10):2025-33 - PubMed
  62. Nature. 2017 Feb 16;542(7641):367-371 - PubMed
  63. Sci Rep. 2016 Oct 27;6:35928 - PubMed
  64. ACS Nano. 2016 Apr 26;10(4):3886-99 - PubMed
  65. Biochem J. 1991 Mar 1;274 ( Pt 2):381-6 - PubMed
  66. Nat Commun. 2011;2:282 - PubMed
  67. Cell Res. 2015 Jan;25(1):24-38 - PubMed
  68. Neuro Oncol. 2017 Oct 19;19(11):1494-1502 - PubMed

MeSH terms

Publication Types

Grant support