Display options
Share it on

Sci Rep. 2019 Feb 22;9(1):2561. doi: 10.1038/s41598-019-39114-4.

How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: a transcriptome analysis.

Scientific reports

Alberto Vangelisti, Liceth Solorzano Zambrano, Giovanni Caruso, Desiré Macheda, Rodolfo Bernardi, Gabriele Usai, Flavia Mascagni, Tommaso Giordani, Riccardo Gucci, Andrea Cavallini, Lucia Natali

Affiliations

  1. Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
  2. Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy. [email protected].

PMID: 30796285 PMCID: PMC6385202 DOI: 10.1038/s41598-019-39114-4

Abstract

Although Ficus carica L. (fig) is one of the most resistant fruit tree species to salinity, no comprehensive studies are currently available on its molecular responses to salinity. Here we report a transcriptome analysis of F. carica cv. Dottato exposed to 100 mM sodium chloride for 7 weeks, where RNA-seq analysis was performed on leaf samples at 24 and 48 days after the beginning of salinization; a genome-derived fig transcriptome was used as a reference. At day 24, 224 transcripts were significantly up-regulated and 585 were down-regulated, while at day 48, 409 genes were activated and 285 genes were repressed. Relatively small transcriptome changes were observed after 24 days of salt treatment, showing that fig plants initially tolerate salt stress. However, after an early down-regulation of some cell functions, major transcriptome changes were observed after 48 days of salinity. Seven weeks of 100 mM NaCl dramatically changed the repertoire of expressed genes, leading to activation or reactivation of many cell functions. We also identified salt-regulated genes, some of which had not been previously reported to be involved in plant salinity responses. These genes could be potential targets for the selection of favourable genotypes, through breeding or biotechnology, to improve salt tolerance in fig or other crops.

References

  1. Plant J. 1999 Sep;19(5):579-89 - PubMed
  2. Plant J. 2000 Aug;23(4):441-50 - PubMed
  3. Cell. 2002 Jan 11;108(1):45-56 - PubMed
  4. Metab Eng. 2002 Jan;4(1):49-56 - PubMed
  5. Plant Cell Environ. 2002 Feb;25(2):239-250 - PubMed
  6. Methods. 2001 Dec;25(4):402-8 - PubMed
  7. Plant J. 2002 Aug;31(3):279-92 - PubMed
  8. Plant Physiol. 1994 Sep;106(1):281-292 - PubMed
  9. Plant Cell Physiol. 2003 Apr;44(4):412-4 - PubMed
  10. Hum Mol Genet. 2003 Aug 15;12(16):2063-76 - PubMed
  11. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9354-8 - PubMed
  12. Tree Physiol. 1997 Jan;17(1):13-21 - PubMed
  13. Plant J. 2004 Mar;37(6):914-39 - PubMed
  14. Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499 - PubMed
  15. Ecotoxicol Environ Saf. 2005 Mar;60(3):324-49 - PubMed
  16. Plant J. 2005 Jul;43(2):273-83 - PubMed
  17. Bioinformatics. 2005 Sep 15;21(18):3674-6 - PubMed
  18. Plant Physiol. 1980 Mar;65(3):478-9 - PubMed
  19. Plant Physiol. 2006 Jul;141(3):957-65 - PubMed
  20. Plant Mol Biol. 2007 Mar;63(5):609-23 - PubMed
  21. Plant Physiol. 2007 Apr;143(4):1467-83 - PubMed
  22. J Biosci. 2007 Apr;32(3):621-8 - PubMed
  23. J Bacteriol. 2007 Oct;189(19):6968-75 - PubMed
  24. Plant Cell Environ. 2008 May;31(5):602-21 - PubMed
  25. Genome Res. 2008 Apr;18(4):571-84 - PubMed
  26. Plant Cell Physiol. 2008 Jun;49(6):880-90 - PubMed
  27. Annu Rev Plant Biol. 2008;59:651-81 - PubMed
  28. Nat Methods. 2008 Jul;5(7):621-8 - PubMed
  29. J Plant Physiol. 2009 Jan 30;166(2):180-91 - PubMed
  30. Funct Integr Genomics. 2009 Feb;9(1):109-23 - PubMed
  31. Ann Bot. 2009 Feb;103(4):551-60 - PubMed
  32. Curr Opin Plant Biol. 2009 Apr;12(2):133-9 - PubMed
  33. Mol Plant. 2009 Jan;2(1):84-107 - PubMed
  34. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  35. Trends Plant Sci. 2010 Feb;15(2):89-97 - PubMed
  36. Plant J. 2010 Jul 1;63(1):128-40 - PubMed
  37. Plant J. 2010 Sep;63(5):848-60 - PubMed
  38. Nature. 2010 Sep 23;467(7314):470-3 - PubMed
  39. Plant Physiol Biochem. 2010 Dec;48(12):909-30 - PubMed
  40. Mol Biol Rep. 2012 Feb;39(2):969-87 - PubMed
  41. Mol Biol Rep. 2012 Feb;39(2):1617-26 - PubMed
  42. Plant Physiol. 2011 Aug;156(4):2053-68 - PubMed
  43. PLoS One. 2011;6(7):e21800 - PubMed
  44. Plant Biol (Stuttg). 2012 May;14(3):428-37 - PubMed
  45. Nat Biotechnol. 2012 Mar 11;30(4):360-4 - PubMed
  46. Biochemistry. 2012 Jun 26;51(25):5091-104 - PubMed
  47. Plant Physiol. 2012 Sep;160(1):349-64 - PubMed
  48. Plant Physiol. 2012 Sep;160(1):379-95 - PubMed
  49. Planta. 2013 Jun;237(6):1547-59 - PubMed
  50. Physiol Mol Biol Plants. 2008 Apr;14(1-2):137-54 - PubMed
  51. PLoS One. 2013 Nov 05;8(11):e80218 - PubMed
  52. Rice (N Y). 2013 Oct 28;6(1):27 - PubMed
  53. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  54. Mol Plant. 2014 Aug;7(8):1329-1349 - PubMed
  55. Food Chem. 2014 Dec 1;164:119-27 - PubMed
  56. Front Plant Sci. 2014 Dec 04;5:687 - PubMed
  57. J Exp Bot. 2015 Apr;66(7):2079-91 - PubMed
  58. Plant Mol Biol. 2015 Dec;89(6):559-76 - PubMed
  59. Plants (Basel). 2015 Feb 16;4(1):112-66 - PubMed
  60. PLoS One. 2016 Aug 02;11(8):e0160370 - PubMed
  61. Sci Rep. 2017 Jan 25;7:41124 - PubMed
  62. Genom Data. 2017 Jul 05;13:64-66 - PubMed
  63. Front Plant Sci. 2017 Jul 17;8:1231 - PubMed
  64. PLoS One. 2017 Sep 18;12(9):e0185017 - PubMed
  65. Int J Mol Sci. 2018 Nov 20;19(11):null - PubMed
  66. Mol Plant Microbe Interact. 1996 May;9(4):233-42 - PubMed
  67. Mol Gen Genet. 1997 Mar 18;254(1):104-9 - PubMed

MeSH terms

Publication Types