Display options
Share it on

Sci Rep. 2019 Feb 22;9(1):2597. doi: 10.1038/s41598-019-39152-y.

Electrically Reconfigurable Micromirror Array for Direct Spatial Light Modulation of Terahertz Waves over a Bandwidth Wider Than 1 THz.

Scientific reports

Jan Kappa, Dominik Sokoluk, Steffen Klingel, Corey Shemelya, Egbert Oesterschulze, Marco Rahm

Affiliations

  1. Department of Electrical and Computer Engineering, Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany. [email protected].
  2. Department of Electrical and Computer Engineering, Research Center OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
  3. Department of Experimental Physics, Physics and Technology of Nanostructures, Nano Structuring Center, Technische Universität Kaiserslautern, Kaiserslautern, Germany.

PMID: 30796342 PMCID: PMC6385255 DOI: 10.1038/s41598-019-39152-y

Abstract

We report the design, fabrication and experimental investigation of a spectrally wide-band terahertz spatial light modulator (THz-SLM) based on an array of 768 actuatable mirrors with each having a length of 220 μm and a width of 100 μm. A mirror length of several hundred micrometers is required to reduce diffraction from individual mirrors at terahertz frequencies and to increase the pixel-to-pixel modulation contrast of the THz-SLM. By means of spatially selective actuation, we used the mirror array as reconfigurable grating to spatially modulate terahertz waves in a frequency range from 0.97 THz to 2.28 THz. Over the entire frequency band, the modulation contrast was higher than 50% with a peak modulation contrast of 87% at 1.38 THz. For spatial light modulation, almost arbitrary spatial pixel sizes can be realized by grouping of mirrors that are collectively switched as a pixel. For fabrication of the actuatable mirrors, we exploited the intrinsic residual stress in chrome-copper-chrome multi-layers that forces the mirrors into an upstanding position at an inclination angle of 35°. By applying a bias voltage of 37 V, the mirrors were pulled down to the substrate. By hysteretic switching, we were able to spatially modulate terahertz radiation at arbitrary pixel modulation patterns.

References

  1. Opt Express. 2011 Apr 11;19(8):7827-32 - PubMed
  2. Opt Lett. 2012 May 1;37(9):1484-6 - PubMed
  3. Opt Express. 2012 Aug 13;20(17):19200-5 - PubMed
  4. Phys Rev Lett. 2013 Apr 26;110(17):177403 - PubMed
  5. Opt Express. 2013 May 20;21(10):12507-18 - PubMed
  6. Opt Lett. 2013 Aug 1;38(15):2821-4 - PubMed
  7. Opt Express. 2013 Sep 23;21(19):22400-9 - PubMed
  8. Opt Express. 2014 Jul 28;22(15):18401-11 - PubMed
  9. Opt Lett. 2015 May 1;40(9):1984-7 - PubMed
  10. Sci Rep. 2015 Jun 26;5:11678 - PubMed
  11. Opt Express. 2015 Aug 24;23(17):22274-84 - PubMed
  12. Sci Adv. 2016 Jun 03;2(6):e1600190 - PubMed
  13. Opt Express. 2016 Oct 17;24(21):23863-23871 - PubMed
  14. Sci Rep. 2017 Feb 15;7:42540 - PubMed
  15. Opt Express. 2017 Aug 21;25(17):20850-20859 - PubMed
  16. Nanotechnology. 2017 Dec 1;28(48):485302 - PubMed
  17. Opt Express. 2018 Feb 5;26(3):3353-3367 - PubMed
  18. Sci Rep. 2018 Mar 20;8(1):4886 - PubMed
  19. Phys Rev Lett. 2018 Mar 23;120(12):124502 - PubMed
  20. Opt Express. 2018 Apr 16;26(8):9417-9431 - PubMed

Publication Types