Display options
Share it on

PLoS Comput Biol. 2019 Jan 24;15(1):e1006687. doi: 10.1371/journal.pcbi.1006687. eCollection 2019 Jan.

Cellular determinants of metabolite concentration ranges.

PLoS computational biology

Anika Küken, Jeanne M O Eloundou-Mbebi, Georg Basler, Zoran Nikoloski

Affiliations

  1. System Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
  2. Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany.

PMID: 30677015 PMCID: PMC6345444 DOI: 10.1371/journal.pcbi.1006687

Abstract

Cellular functions are shaped by reaction networks whose dynamics are determined by the concentrations of underlying components. However, cellular mechanisms ensuring that a component's concentration resides in a given range remain elusive. We present network properties which suffice to identify components whose concentration ranges can be efficiently computed in mass-action metabolic networks. We show that the derived ranges are in excellent agreement with simulations from a detailed kinetic metabolic model of Escherichia coli. We demonstrate that the approach can be used with genome-scale metabolic models to arrive at predictions concordant with measurements from Escherichia coli under different growth scenarios. By application to 14 genome-scale metabolic models from diverse species, our approach specifies the cellular determinants of concentration ranges that can be effectively employed to make predictions for a variety of biotechnological and medical applications.

Conflict of interest statement

The authors have declared that no competing interests exist. AK and GB are paid employees of the Max Planck Society. JMOEM and ZN are affiliated with Max Planck Society and are paid employees at Unive

References

  1. Bioinformatics. 2019 Jan 1;35(1):167-169 - PubMed
  2. Science. 2012 May 4;336(6081):601-4 - PubMed
  3. J Exp Bot. 2002 Apr;53(370):959-70 - PubMed
  4. Nat Chem Biol. 2016 Jul;12(7):482-9 - PubMed
  5. PLoS Comput Biol. 2010 Apr 15;6(4):e1000744 - PubMed
  6. Metab Eng. 2014 Sep;25:50-62 - PubMed
  7. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7 - PubMed
  8. Appl Environ Microbiol. 2006 Feb;72(2):1164-72 - PubMed
  9. Genome Res. 2004 Nov;14(11):2367-76 - PubMed
  10. BMC Bioinformatics. 2012 Apr 23;13:57 - PubMed
  11. Nat Protoc. 2011 Aug 04;6(9):1290-307 - PubMed
  12. Genome Res. 2004 Feb;14(2):301-12 - PubMed
  13. Biotechnol Bioeng. 2013 Dec;110(12):3164-76 - PubMed
  14. PLoS Comput Biol. 2013;9(8):e1003195 - PubMed
  15. Science. 2007 Apr 27;316(5824):593-7 - PubMed
  16. PLoS One. 2014 May 27;9(5):e98372 - PubMed
  17. Nat Rev Mol Cell Biol. 2016 Jul;17(7):451-9 - PubMed
  18. Nat Chem Biol. 2009 Aug;5(8):593-9 - PubMed
  19. Cell Syst. 2016 Mar 23;2(3):209-13 - PubMed
  20. Mol Syst Biol. 2007;3:137 - PubMed
  21. Science. 2016 Oct 28;354(6311): - PubMed
  22. Nat Rev Genet. 2014 Feb;15(2):107-20 - PubMed
  23. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3401-6 - PubMed
  24. Nat Rev Microbiol. 2012 Feb 27;10(4):291-305 - PubMed
  25. Mol Syst Biol. 2011 Oct 11;7:535 - PubMed
  26. Biophys J. 2007 Mar 1;92(5):1792-805 - PubMed
  27. Nat Rev Mol Cell Biol. 2010 Jan;11(1):50-61 - PubMed
  28. J Theor Biol. 2013 Jan 21;317:359-65 - PubMed
  29. Cell Syst. 2015 Oct 28;1(4):270-82 - PubMed
  30. Curr Opin Biotechnol. 2015 Aug;34:82-90 - PubMed
  31. PLoS One. 2013 Sep 26;8(9):e75370 - PubMed

MeSH terms

Publication Types