Display options
Share it on

Pulm Circ. 2019 Jan-Mar;9(1):2045894019837876. doi: 10.1177/2045894019837876.

Hypoxia-induced pulmonary hypertension and chronic lung disease: caveolin-1 dysfunction an important underlying feature.

Pulmonary circulation

Jing Huang, Maria Frid, Michael H Gewitz, John T Fallon, Dale Brown, Greta Krafsur, Kurt Stenmark, Rajamma Mathew

Affiliations

  1. 1 Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, USA.
  2. 2 Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  3. 3 Department of Pathology, New York Medical College, Valhalla, NY, USA.
  4. 4 Department of Physiology, New York Medical College, Valhalla, NY, USA.

PMID: 30806156 PMCID: PMC6434444 DOI: 10.1177/2045894019837876

Abstract

Caveolin-1 (cav-1) has been shown to play a significant role in the pathogenesis of pulmonary hypertension (PH). In the monocrotaline model of PH, the loss of endothelial cav-1 as well as reciprocal activation of proliferative and anti-apoptotic pathways initiate the disease process and facilitate its progression. In order to examine the role of cav-1 in hypoxia-induced PH, we exposed rats and neonatal calves to hypobaric hypoxia and obtained hemodynamic data and assessed the expression of cav-1 and related proteins eNOS, HSP90, PTEN, gp130, PY-STAT3, β-catenin, and Glut1 in the lung tissue. Chronic hypoxic exposure in rats (48 h-4 weeks) and calves (two weeks) did not alter the expression of cav-1, HSP90, or eNOS. PTEN expression was significantly decreased accompanied by PY-STAT3 activation and increased expression of gp130, Glut1, and β-catenin in hypoxic animals. We also examined cav-1 expression in the lung sections from steers with chronic hypoxic disease (Brisket disease) and from patients with chronic lung disease who underwent lung biopsy for medical reasons. There was no cav-1 loss in Brisket disease. In chronic lung disease cases, endothelial cav-1 expression was present, albeit with less intense staining in some cases. In conclusion, hypoxia did not alter the cav-1 expression in experimental models. The presence of cav-1, however, did not suppress hypoxia-induced activation of PY-STAT3 and β catenin, increased gp130 and Glut1 expression, or prevent the PTEN loss, indicating cav-1 dysfunction in hypoxia-induced PH.

Keywords: Glut1; PTEN; ß-catenin

References

  1. J Biol Chem. 2000 Jul 21;275(29):22268-72 - PubMed
  2. J Biol Chem. 2000 Jul 28;275(30):23368-77 - PubMed
  3. Eur J Pharmacol. 2001 Jun 1;421(1):45-53 - PubMed
  4. Circ Res. 2002 Feb 22;90(3):340-7 - PubMed
  5. J Clin Invest. 2002 May;109(9):1139-42 - PubMed
  6. J Gen Virol. 2002 Jul;83(Pt 7):1651-8 - PubMed
  7. Biochem Biophys Res Commun. 2002 Aug 23;296(3):692-7 - PubMed
  8. J Biol Chem. 2002 Nov 15;277(46):44085-92 - PubMed
  9. Biochim Biophys Acta. 2002 Dec 23;1567(1-2):165-75 - PubMed
  10. Biochim Biophys Acta. 2003 Jun 5;1653(1):1-24 - PubMed
  11. Hum Gene Ther. 2003 May 1;14(7):601-10 - PubMed
  12. Annu Rev Cell Dev Biol. 2004;20:781-810 - PubMed
  13. Arterioscler Thromb Vasc Biol. 2005 Nov;25(11):2335-42 - PubMed
  14. Respir Res. 2006 Jan 13;7:7 - PubMed
  15. Trends Endocrinol Metab. 2006 May-Jun;17(4):150-8 - PubMed
  16. FASEB J. 2007 Sep;21(11):2970-9 - PubMed
  17. Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L548-54 - PubMed
  18. Am J Physiol Lung Cell Mol Physiol. 2008 Jun;294(6):L1250-9 - PubMed
  19. Am J Respir Crit Care Med. 2008 Sep 15;178(6):558-64 - PubMed
  20. Am J Respir Cell Mol Biol. 2009 Jun;40(6):683-91 - PubMed
  21. Open Respir Med J. 2009 May 13;3:73-8 - PubMed
  22. J Clin Invest. 1991 Jan;87(1):155-62 - PubMed
  23. Exp Lung Res. 2010 Feb;36(1):57-66 - PubMed
  24. N Engl J Med. 1991 May 30;324(22):1539-47 - PubMed
  25. Am J Pathol. 2010 Jun;176(6):2626-37 - PubMed
  26. Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1190-204 - PubMed
  27. J Pediatr Hematol Oncol. 2011 Jan;33(1):55-8 - PubMed
  28. Pulm Med. 2011;2011:573432 - PubMed
  29. Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1331-40 - PubMed
  30. Cell Biochem Biophys. 2013 Nov;67(2):363-72 - PubMed
  31. Cell. 2012 Mar 30;149(1):49-62 - PubMed
  32. Pulm Circ. 2011 Oct-Dec;1(4):462-9 - PubMed
  33. Exp Biol Med (Maywood). 2012 Aug;237(8):956-65 - PubMed
  34. J Heart Lung Transplant. 2013 Mar;32(3):347-54 - PubMed
  35. Pulm Circ. 2012 Oct;2(4):492-500 - PubMed
  36. Circ Res. 2014 Jan 3;114(1):67-78 - PubMed
  37. Am J Physiol Heart Circ Physiol. 2014 Jan 1;306(1):H15-25 - PubMed
  38. J Mol Endocrinol. 2014 Oct;53(2):247-58 - PubMed
  39. Eur Respir Rev. 2014 Sep;23(133):350-5 - PubMed
  40. World J Cardiol. 2015 Oct 26;7(10):671-84 - PubMed
  41. Respirology. 2016 Aug;21(6):984-94 - PubMed
  42. J Res Natl Inst Stand Technol. 2008 Aug 01;113(4):239-49 - PubMed
  43. J Comp Pathol. 2016 Aug-Oct;155(2-3):185-189 - PubMed
  44. Am J Physiol. 1989 Aug;257(2 Pt 1):C223-31 - PubMed
  45. Oncotarget. 2016 Dec 20;7(51):84999-85020 - PubMed
  46. Oncogene. 2017 Jun 1;36(22):3119-3136 - PubMed
  47. PLoS One. 2017 Jan 26;12(1):e0170490 - PubMed
  48. Genes Cancer. 2016 Nov;7(11-12):368-382 - PubMed
  49. Pulm Circ. 2018 Jan-Mar;8(1):2045894018758528 - PubMed
  50. J Appl Physiol (1985). 1987 Feb;62(2):821-30 - PubMed
  51. Am J Physiol. 1979 Jun;236(6):H818-27 - PubMed
  52. Circulation. 1993 Feb;87(2):440-6 - PubMed
  53. Cardiovasc Res. 1995 Nov;30(5):739-46 - PubMed
  54. Science. 1997 Sep 12;277(5332):1630-5 - PubMed
  55. Am J Physiol. 1998 Jun;274(6):L908-13 - PubMed

Publication Types

Grant support