Display options
Share it on

Biomed Opt Express. 2019 Jan 22;10(2):731-746. doi: 10.1364/BOE.10.000731. eCollection 2019 Feb 01.

Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT.

Biomedical optics express

Jules Scholler, Viacheslav Mazlin, Olivier Thouvenin, Kassandra Groux, Peng Xiao, José-Alain Sahel, Mathias Fink, Claude Boccara, Kate Grieve

Affiliations

  1. Institut Langevin, ESPCI Paris, CNRS, PSL University, 1 rue Jussieu, 75005 Paris, France.
  2. LLTech SAS, 29 Rue du Faubourg Saint Jacques, Paris, 75014, France.
  3. Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
  4. Vision Institute/CIC 1423, UPMC-Sorbonne Universities, UMR_S 968/INSERM, U968/CNRS, UMR_7210, 17 Rue Moreau, Paris, 75012, France.
  5. Quinze-Vingts National Eye Hospital, 28 Rue de Charenton, Paris, 75012, France.
  6. Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

PMID: 30800511 PMCID: PMC6377896 DOI: 10.1364/BOE.10.000731

Abstract

We describe recent technological progress in multimodal en face full-field optical coherence tomography that has allowed detection of slow and fast dynamic processes in the eye. We show that by combining static, dynamic and fluorescence contrasts we can achieve label-free high-resolution imaging of the retina and anterior eye with temporal resolution from milliseconds to several hours, allowing us to probe biological activity at subcellular scales inside 3D bulk tissue. Our setups combine high lateral resolution over a large field of view with acquisition at several hundreds of frames per second which make it a promising tool for clinical applications and biomedical studies. Its contactless and non-destructive nature is shown to be effective for both following in vitro sample evolution over long periods of time and for imaging of the human eye in vivo.

Conflict of interest statement

CB: LLTech SAS (I), K. Groux: LLTech SAS (E), others: none.

References

  1. Appl Opt. 2004 May 10;43(14):2874-83 - PubMed
  2. Invest Ophthalmol Vis Sci. 2004 Nov;45(11):4126-31 - PubMed
  3. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13081-6 - PubMed
  4. Opt Lett. 2007 Mar 1;32(5):506-8 - PubMed
  5. Opt Lett. 1998 Feb 15;23(4):244-6 - PubMed
  6. Opt Lett. 1997 Dec 15;22(24):1905-7 - PubMed
  7. Science. 1991 Nov 22;254(5035):1178-81 - PubMed
  8. Microvasc Res. 2010 Mar;79(2):109-13 - PubMed
  9. Opt Express. 2011 Mar 14;19(6):4833-47 - PubMed
  10. J Pathol Inform. 2011;2:28 - PubMed
  11. J Biomed Opt. 2011 Nov;16(11):116012 - PubMed
  12. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1506-11 - PubMed
  13. Biomed Opt Express. 2012 Mar 1;3(3):661-6 - PubMed
  14. Opt Lett. 2012 May 15;37(10):1613-5 - PubMed
  15. Opt Express. 2012 Sep 24;20(20):22262-77 - PubMed
  16. Biomed Opt Express. 2012 Oct 1;3(10):2611-22 - PubMed
  17. Biomed Opt Express. 2012 Nov 1;3(11):2950-63 - PubMed
  18. PLoS One. 2013 Aug 23;8(8):e71398 - PubMed
  19. J Biomed Opt. 2013 Dec;18(12):121514 - PubMed
  20. Gastrointest Endosc. 2015 Feb;81(2):342-50 - PubMed
  21. Eye Contact Lens. 2016 Mar;42(2):135-40 - PubMed
  22. Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29 - PubMed
  23. Sci Rep. 2016 Jan 13;6:19395 - PubMed
  24. Invest Ophthalmol Vis Sci. 2016 Feb;57(2):632-46 - PubMed
  25. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT96-OCT104 - PubMed
  26. Biomed Opt Express. 2016 Mar 24;7(4):1511-24 - PubMed
  27. Opt Lett. 2016 Sep 1;41(17):3920-3 - PubMed
  28. Biomed Opt Express. 2016 Oct 07;7(11):4501-4513 - PubMed
  29. Biomed Opt Express. 2016 Nov 23;7(12):5233-5251 - PubMed
  30. J Biomed Opt. 2017 Feb 1;22(2):26004 - PubMed
  31. Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4605-4615 - PubMed
  32. Biomed Opt Express. 2018 Jan 10;9(2):557-568 - PubMed

Publication Types