Display options
Share it on

3 Biotech. 2019 Mar;9(3):94. doi: 10.1007/s13205-019-1625-8. Epub 2019 Feb 19.

Complete genome sequence of the abscisic acid-utilizing strain .

3 Biotech

Natalia E Gogoleva, Yevgeny A Nikolaichik, Timur T Ismailov, Vladimir Y Gorshkov, Vera I Safronova, Andrey A Belimov, Yuri Gogolev

Affiliations

  1. Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, 420111 Russian Federation.
  2. 2Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Lenina St., Kazan, 420021 Russian Federation.
  3. 3Department of Molecular Biology, Belarusian State University, 4, Nezaliezhnasci ave., 220030 Minsk, Belarus.
  4. 4All-Russia Research Institute for Agricultural Microbiology, 3 Sh. Podbelskogo St., Saint Petersburg, 196608 Russian Federation.

PMID: 30800605 PMCID: PMC6385066 DOI: 10.1007/s13205-019-1625-8

Abstract

The phytohormone abscisic acid (ABA) plays multiple roles in plant survival and fitness. Significant quantities of ABA are constantly introduced into soil via root exudation, root turnover and incorporation of abscised shoot tissues. In addition, some phytopathogenic fungi synthesize ABA in the course of plant-microbe interactions. The accumulation of soil ABA can inhibit seed germination and root growth but despite this observation, the biochemical pathways of ABA conversion by microorganisms and genetic determinants of the process remain unknown. Here we report on the complete genome sequence of strain P6W, an ABA-utilizing isolate of the genus

Keywords: Abscisic acid; Complete genome sequence; Novosphingobium; Plant–microbe interactions.; Rhizosphere

Conflict of interest statement

Compliance with ethical standardsWe declare no conflict of interest with respect to this paper.

References

  1. J Bacteriol. 1999 May;181(9):2675-82 - PubMed
  2. Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1405-17 - PubMed
  3. J Exp Bot. 2002 Jan;53(366):33-7 - PubMed
  4. EMBO J. 2004 Apr 7;23(7):1647-56 - PubMed
  5. Phytochemistry. 2006 Sep;67(17):1887-94 - PubMed
  6. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 - PubMed
  7. FEMS Microbiol Ecol. 2008 Aug;65(2):238-50 - PubMed
  8. Mol Plant Pathol. 2008 Sep;9(5):661-73 - PubMed
  9. Appl Microbiol Biotechnol. 2009 Nov;85(2):371-81 - PubMed
  10. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31 - PubMed
  11. Bioinformatics. 2011 Mar 15;27(6):863-4 - PubMed
  12. Nat Methods. 2011 Sep 29;8(10):785-6 - PubMed
  13. PLoS Comput Biol. 2011 Oct;7(10):e1002195 - PubMed
  14. Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):667-72 - PubMed
  15. Plant Physiol Biochem. 2014 Jan;74:84-91 - PubMed
  16. PLoS One. 2014 Nov 19;9(11):e112963 - PubMed
  17. Bioinformatics. 2015 Jun 15;31(12):2035-7 - PubMed
  18. PeerJ. 2015 Jun 02;3:e996 - PubMed
  19. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 - PubMed
  20. Sci Rep. 2016 Apr 13;6:24373 - PubMed
  21. PeerJ. 2016 May 24;4:e2056 - PubMed
  22. Nucleic Acids Res. 2016 Aug 19;44(14):6614-24 - PubMed
  23. Evolution. 1985 Jul;39(4):783-791 - PubMed
  24. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 - PubMed
  25. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  26. Planta. 1997 Oct;203(2):182-7 - PubMed

Publication Types