Display options
Share it on

J Exp Orthop. 2019 Feb 02;6(1):4. doi: 10.1186/s40634-019-0175-7.

Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population.

Journal of experimental orthopaedics

Yu Taniguchi, Tomokazu Yoshioka, Hisashi Sugaya, Masahiko Gosho, Katsuya Aoto, Akihiro Kanamori, Masashi Yamazaki

Affiliations

  1. Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
  2. Musculoskeletal System, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
  3. Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. [email protected].
  4. Musculoskeletal System, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. [email protected].
  5. Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

PMID: 30712144 PMCID: PMC6359998 DOI: 10.1186/s40634-019-0175-7

Abstract

BACKGROUND: Clinical application of platelet-rich-plasma (PRP) has been accelerated to investigate early recovery from various musculoskeletal conditions. It involves the promotion of tissue damage repair through the action of multiple growth factors at physiological concentrations. The composition of PRP differs based on many factors, which may include age and gender. Therefore, we analyzed correlations between age, gender, and platelet counts in PRP with growth factors in Japanese subjects.

METHOD: Peripheral blood was drawn from 39 healthy volunteers between 20 and 49 years of age (age, mean ± standard deviation = 33 ± 8.7 years; gender ratio, male:female = 19:20; BMI, mean ± standard deviation = 22 ± 4.0) and prepared through centrifugation (volume, 6 mL per sample). After being activated with CaCl

RESULTS: Age was negatively correlated with platelet-derived growth factor-BB and insulin-like growth factor-1 (r = - 0.32, - 0.39), and gender had no influence on growth factors. Platelet counts in PRP positively correlated with platelet-derived growth factor-BB, transforming growth factor-β1, epidermal growth factor, and hepatocyte growth factor (r = 0.39, 0.75, 0.71, and 0.48, respectively).

CONCLUSIONS: This clinical study shows a significant variation of PRP among individual patients and that this variation is influenced by the age and the platelet counts of the subjects. Our data demonstrate that patient characteristics account for the differences in PRP physiological activity.

Keywords: Age; Gender; Growth factor; Platelet count; Platelet-rich plasma

References

  1. Acta Physiol Scand. 1999 Dec;167(4):301-5 - PubMed
  2. Genes Dev. 2001 Nov 15;15(22):2950-66 - PubMed
  3. Implant Dent. 2001;10(4):225-8 - PubMed
  4. Endocr Rev. 2002 Feb;23(1):90-119 - PubMed
  5. J Craniomaxillofac Surg. 2002 Apr;30(2):97-102 - PubMed
  6. Sports Med. 2003;33(5):381-94 - PubMed
  7. J Oral Maxillofac Surg. 2004 Apr;62(4):489-96 - PubMed
  8. Plast Reconstr Surg. 2004 Nov;114(6):1502-8 - PubMed
  9. Osteoarthritis Cartilage. 2006 Sep;14(9):839-48 - PubMed
  10. Am J Sports Med. 2007 Feb;35(2):245-51 - PubMed
  11. J Orthop Res. 2009 Aug;27(8):1033-42 - PubMed
  12. Cell Prolif. 2009 Apr;42(2):162-70 - PubMed
  13. J Bone Joint Surg Br. 2009 Aug;91(8):987-96 - PubMed
  14. J Cell Biol. 1990 May;110(5):1665-72 - PubMed
  15. Am J Sports Med. 2009 Nov;37(11):2259-72 - PubMed
  16. J Sports Med Phys Fitness. 2009 Dec;49(4):346-57 - PubMed
  17. Annu Rev Physiol. 1991;53:201-16 - PubMed
  18. J Cell Physiol. 2010 Nov;225(3):757-66 - PubMed
  19. Am J Sports Med. 2011 Feb;39(2):266-71 - PubMed
  20. Br J Sports Med. 2010 Dec;44(15):1072-81 - PubMed
  21. Ageing Res Rev. 2011 Jul;10(3):319-29 - PubMed
  22. Clin Orthop Relat Res. 2011 Oct;469(10):2706-15 - PubMed
  23. Curr Pharm Biotechnol. 2012 Jun;13(7):1185-95 - PubMed
  24. Korean J Lab Med. 2011 Jul;31(3):212-8 - PubMed
  25. Am J Sports Med. 2011 Oct;39(10):2135-40 - PubMed
  26. Med Sport Sci. 2012;57:53-64 - PubMed
  27. PLoS One. 2011;6(12):e28663 - PubMed
  28. Arthroscopy. 2012 Mar;28(3):429-39 - PubMed
  29. Arthroscopy. 2012 Jul;28(7):998-1009 - PubMed
  30. Arthroscopy. 2012 Aug;28(8):1070-8 - PubMed
  31. J Bone Joint Surg Am. 2013 Jun 5;95(11):980-8 - PubMed
  32. PLoS One. 2013 Sep 19;8(9):e73118 - PubMed
  33. Cochrane Database Syst Rev. 2013 Dec 23;(12):CD010071 - PubMed
  34. Arthritis Rheumatol. 2014 Aug;66(8):2201-9 - PubMed
  35. Arthroscopy. 2014 May;30(5):629-38 - PubMed
  36. J Artif Organs. 2014 Jun;17(2):186-92 - PubMed
  37. N Engl J Med. 2014 Jun 26;370(26):2546-7 - PubMed
  38. Mil Med. 2014 Jul;179(7):799-805 - PubMed
  39. Am J Sports Med. 2014 Oct;42(10):2410-8 - PubMed
  40. Biomed Res Int. 2014;2014:630870 - PubMed
  41. Am J Sports Med. 2015 Dec;43(12):3062-70 - PubMed
  42. Biomaterials. 2016 May;87:147-156 - PubMed
  43. Acta Orthop Traumatol Turc. 2016;50(2):191-7 - PubMed
  44. Am J Sports Med. 2017 Jan;45(1):226-233 - PubMed
  45. J Orthop Sci. 2016 Sep;21(5):683-9 - PubMed
  46. J Bone Joint Surg Am. 2017 Oct 18;99(20):1769-1779 - PubMed
  47. Am J Sports Med. 2018 Feb;46(2):409-419 - PubMed
  48. Nagoya J Med Sci. 2018 Feb;80(1):39-51 - PubMed
  49. Ann Rheum Dis. 1995 Aug;54(8):645-53 - PubMed
  50. J Oral Maxillofac Surg. 1994 Feb;52(2):161-5; discussion 166 - PubMed
  51. Cytokine Growth Factor Rev. 1996 Oct;7(3):249-58 - PubMed
  52. J Oral Maxillofac Surg. 1997 Nov;55(11):1294-9 - PubMed
  53. Exp Cell Res. 1998 Jan 10;238(1):265-72 - PubMed
  54. Am J Physiol. 1998 Jul;275(1 Pt 1):E118-23 - PubMed
  55. Tissue Eng. 1998 Winter;4(4):415-28 - PubMed

Publication Types