Display options
Share it on

Front Genet. 2019 Feb 12;10:75. doi: 10.3389/fgene.2019.00075. eCollection 2019.

Microscopy-Based Automated Live Cell Screening for Small Molecules That Affect Ciliation.

Frontiers in genetics

Peishan Zhang, Anna A Kiseleva, Vladislav Korobeynikov, Hanqing Liu, Margret B Einarson, Erica A Golemis

Affiliations

  1. School of Pharmacy, Jiangsu University, Zhenjiang, China.
  2. Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, United States.
  3. Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan, Russia.
  4. Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.

PMID: 30809247 PMCID: PMC6379280 DOI: 10.3389/fgene.2019.00075

Abstract

The primary monocilium, or cilium, is a single antenna-like organelle that protrudes from the surface of most mammalian cell types, and serves as a signaling hub. Mutations of cilia-associated genes result in severe genetic disorders termed ciliopathies. Among these, the most common is autosomal dominant polycystic kidney disease (ADPKD); less common genetic diseases include Bardet-Biedl syndrome, Joubert syndrome, nephronophthisis, and others. Important signaling cascades with receptor systems localized exclusively or in part at cilia include Sonic Hedgehog (SHH), platelet derived growth factor alpha (PDGFRα), WNTs, polycystins, and others. Changes in ciliation during development or in pathological conditions such as cancer impacts signaling by these proteins. Notably, ciliation status of cells is coupled closely to the cell cycle, with cilia protruding in quiescent (G0) or early G1 cells, declining in S/G2, and absent in M phase, and has been proposed to contribute to cell cycle regulation. Because of this complex biology, the elaborate machinery regulating ciliary assembly and disassembly receives input from many cellular proteins relevant to cell cycle control, development, and oncogenic transformation, making study of genetic factors and drugs influencing ciliation of high interest. One of the most effective tools to investigate the dynamics of the cilia under different conditions is the imaging of live cells. However, developing assays to observe the primary cilium in real time can be challenging, and requires a consideration of multiple details related to the cilia biology. With the dual goals of identifying small molecules that may have beneficial activity through action on human diseases, and of identifying ciliary activities of existing agents that are in common use or development, we here describe creation and evaluation of three autofluorescent cell lines derived from the immortalized retinal pigmented epithelium parental cell line hTERT-RPE1. These cell lines stably express the ciliary-targeted fluorescent proteins L13-Arl13bGFP, pEGFP-mSmo, and tdTomato-MCHR1-N-10. We then describe methods for use of these cell lines in high throughput screening of libraries of small molecule compounds to identify positive and negative regulators of ciliary disassembly.

Keywords: ADPKD; aurora kinase A; ciliary disassembly; drugs; heat shock protein 90; high content imaging; screening; targeted therapy

References

  1. J Cell Biol. 2000 Oct 30;151(3):709-18 - PubMed
  2. Genes Dev. 2002 Nov 1;16(21):2743-8 - PubMed
  3. J Cell Biol. 2004 Mar 15;164(6):811-7 - PubMed
  4. J Cell Biol. 2004 Jun 7;165(5):609-15 - PubMed
  5. J Am Soc Nephrol. 2005 Dec;16(12):3485-9 - PubMed
  6. Cell Cycle. 2006 Feb;5(4):384-91 - PubMed
  7. Genome Biol. 2006;7(10):R100 - PubMed
  8. Methods Enzymol. 2006;414:99-120 - PubMed
  9. Cell. 2007 Jun 29;129(7):1351-63 - PubMed
  10. Curr Protoc Mol Biol. 2003 Aug;Chapter 9:Unit 9.1 - PubMed
  11. Dev Dyn. 2008 Aug;237(8):1993-2006 - PubMed
  12. J Biomol Screen. 2008 Jul;13(6):449-55 - PubMed
  13. J Clin Invest. 2009 Mar;119(3):428-37 - PubMed
  14. Eur Arch Otorhinolaryngol. 2010 Jun;267(6):897-902 - PubMed
  15. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6346-51 - PubMed
  16. Methods Cell Biol. 2009;94:199-222 - PubMed
  17. Methods Cell Biol. 2009;94:333-46 - PubMed
  18. J Cell Biol. 2010 Jun 14;189(6):1039-51 - PubMed
  19. Cell Mol Life Sci. 2010 Oct;67(19):3287-97 - PubMed
  20. Biol Cell. 2011 Mar;103(3):109-30 - PubMed
  21. Bioinformatics. 2011 Apr 15;27(8):1179-80 - PubMed
  22. Nat Cell Biol. 2011 Apr;13(4):351-60 - PubMed
  23. Curr Opin Nephrol Hypertens. 2011 Jul;20(4):400-8 - PubMed
  24. Methods Cell Biol. 2011;101:39-74 - PubMed
  25. Hum Mol Genet. 2011 Sep 15;20(18):3592-605 - PubMed
  26. Mol Biol Cell. 2011 Dec;22(23):4694-703 - PubMed
  27. Curr Biol. 2012 Mar 6;22(5):414-9 - PubMed
  28. J Cell Biol. 2012 Apr 30;197(3):391-405 - PubMed
  29. Mol Biol Cell. 2012 Jul;23(14):2658-70 - PubMed
  30. PLoS One. 2012;7(6):e38838 - PubMed
  31. Cell Mol Life Sci. 2013 Jun;70(11):1849-74 - PubMed
  32. Curr Opin Cell Biol. 2012 Oct;24(5):652-61 - PubMed
  33. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12786-91 - PubMed
  34. Nat Genet. 2013 Sep;45(9):1004-12 - PubMed
  35. FASEB J. 2014 Jan;28(1):430-9 - PubMed
  36. J Cell Biol. 1985 Dec;101(6):2085-94 - PubMed
  37. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):E3091-100 - PubMed
  38. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12859-64 - PubMed
  39. Cell Rep. 2015 Feb 4;:null - PubMed
  40. Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29 - PubMed
  41. EMBO Rep. 2015 Sep;16(9):1099-113 - PubMed
  42. Dev Cell. 2015 Nov 23;35(4):497-512 - PubMed
  43. Oncotarget. 2016 Mar 1;7(9):9975-92 - PubMed
  44. Nature. 2016 Mar 31;531(7596):656-60 - PubMed
  45. Cell. 2016 May 5;165(4):910-20 - PubMed
  46. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5135-43 - PubMed
  47. Assay Drug Dev Technol. 2016 Oct;14(8):489-510 - PubMed
  48. J Pathol. 2017 Jan;241(2):294-309 - PubMed
  49. Cold Spring Harb Perspect Biol. 2017 May 1;9(5): - PubMed
  50. Biochem Soc Trans. 2017 Feb 8;45(1):37-49 - PubMed
  51. Cold Spring Harb Perspect Biol. 2017 Mar 1;9(3):null - PubMed
  52. Am J Physiol Renal Physiol. 2017 Sep 1;313(3):F706-F720 - PubMed
  53. Nat Rev Mol Cell Biol. 2017 Sep;18(9):533-547 - PubMed
  54. EMBO Rep. 2017 Sep;18(9):1521-1535 - PubMed
  55. Semin Cell Dev Biol. 2017 Nov;71:42-52 - PubMed
  56. ACS Chem Neurosci. 2018 Apr 18;9(4):673-683 - PubMed
  57. FASEB J. 2018 May;32(5):2735-2746 - PubMed
  58. Curr Opin Cell Biol. 2018 Apr;51:124-131 - PubMed
  59. Dev Cell. 2018 May 7;45(3):316-330.e4 - PubMed
  60. Nat Rev Cancer. 2018 Aug;18(8):511-524 - PubMed
  61. J Cell Biol. 2018 Sep 3;217(9):3255-3266 - PubMed
  62. Annu Rev Cell Biol. 1986;2:517-46 - PubMed
  63. J Cell Sci. 1993 Apr;104 ( Pt 4):1229-37 - PubMed
  64. Science. 1998 Jan 16;279(5349):349-52 - PubMed

Publication Types

Grant support