Display options
Share it on

Front Neurorobot. 2019 Mar 07;13:5. doi: 10.3389/fnbot.2019.00005. eCollection 2019.

Brain-Inspired Coding of Robot Body Schema Through Visuo-Motor Integration of Touched Events.

Frontiers in neurorobotics

Ganna Pugach, Alexandre Pitti, Olga Tolochko, Philippe Gaussier

Affiliations

  1. ETIS Laboratory, University Paris-Seine, CNRS UMR 8051, University of Cergy-Pontoise, ENSEA, Cergy-Pontoise, France.
  2. Faculty of Electric Power Engineering and Automation, National Technical University of Ukraine Kyiv Polytechnic Institute, Kyiv, Ukraine.

PMID: 30899217 PMCID: PMC6416207 DOI: 10.3389/fnbot.2019.00005

Abstract

Representing objects in space is difficult because sensorimotor events are anchored in different reference frames, which can be either eye-, arm-, or target-centered. In the brain, Gain-Field (GF) neurons in the parietal cortex are involved in computing the necessary spatial transformations for aligning the tactile, visual and proprioceptive signals. In reaching tasks, these GF neurons exploit a mechanism based on multiplicative interaction for binding simultaneously touched events from the hand with visual and proprioception information.By doing so, they can infer new reference frames to represent dynamically the location of the body parts in the visual space (i.e., the body schema) and nearby targets (i.e., its peripersonal space). In this line, we propose a neural model based on GF neurons for integrating tactile events with arm postures and visual locations for constructing hand- and target-centered receptive fields in the visual space. In robotic experiments using an artificial skin, we show how our neural architecture reproduces the behaviors of parietal neurons (1) for encoding dynamically the body schema of our robotic arm without any visual tags on it and (2) for estimating the relative orientation and distance of targets to it. We demonstrate how tactile information facilitates the integration of visual and proprioceptive signals in order to construct the body space.

Keywords: artificial skin; body schema; gain-field neurons; multimodal integration; non-linear mixed-selectivity; parietal cortex; peri-personal space; visual reaching

References

  1. Eur J Paediatr Neurol. 1997;1(4):103-8 - PubMed
  2. Neuron. 2000 Jul;27(1):15-21 - PubMed
  3. Neurosci Res. 2001 Jun;40(2):163-73 - PubMed
  4. Cereb Cortex. 2001 Oct;11(10):906-17 - PubMed
  5. Neuroscientist. 2001 Oct;7(5):430-40 - PubMed
  6. Cereb Cortex. 2001 Dec;11(12):1124-35 - PubMed
  7. Trends Cogn Sci. 2002 Jan 1;6(1):17-22 - PubMed
  8. Nat Rev Neurosci. 2002 Jul;3(7):553-62 - PubMed
  9. Neurosci Res. 2003 May;46(1):1-10 - PubMed
  10. J Neurosci. 1992 Apr;12(4):1435-53 - PubMed
  11. Nat Neurosci. 2005 Jul;8(7):941-9 - PubMed
  12. J Cogn Neurosci. 2005 Aug;17(8):1328-40 - PubMed
  13. Cogn Process. 2004 Jun;5(2):94-105 - PubMed
  14. Conscious Cogn. 2007 Sep;16(3):645-60 - PubMed
  15. Neuron. 2007 Oct 25;56(2):239-51 - PubMed
  16. Trends Cogn Sci. 2008 Aug;12(8):298-305 - PubMed
  17. Cereb Cortex. 2009 Aug;19(8):1761-75 - PubMed
  18. Neuropsychologia. 2009 May;47(6):1409-20 - PubMed
  19. Neural Netw. 2009 Mar;22(2):144-54 - PubMed
  20. J Neurosci. 2009 May 20;29(20):6436-48 - PubMed
  21. Neuron. 2009 Dec 10;64(5):598-600 - PubMed
  22. Neuron. 2009 Dec 10;64(5):744-55 - PubMed
  23. Neural Comput. 2010 Jun;22(6):1473-92 - PubMed
  24. Exp Brain Res. 2010 Oct;206(2):109-20 - PubMed
  25. Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7951-6 - PubMed
  26. Exp Brain Res. 1990;83(1):29-36 - PubMed
  27. J Neurosci. 2010 Nov 10;30(45):15175-84 - PubMed
  28. J Neurosci. 2011 May 4;31(18):6661-73 - PubMed
  29. PLoS One. 2012;7(7):e41241 - PubMed
  30. Neuron. 2012 Jul 26;75(2):342-51 - PubMed
  31. J Neurosci. 2012 Oct 24;32(43):14951-65 - PubMed
  32. J Cogn Neurosci. 1997 Mar;9(2):222-37 - PubMed
  33. Dev Sci. 2014 Mar;17(2):270-81 - PubMed
  34. J Neurosci. 2014 Apr 9;34(15):5273-84 - PubMed
  35. Neuropsychologia. 2015 Apr;70:375-84 - PubMed
  36. Neural Netw. 2015 Feb;62:102-11 - PubMed
  37. Psychon Bull Rev. 2016 Apr;23(2):426-31 - PubMed
  38. Trends Cogn Sci. 2015 Sep;19(9):499-505 - PubMed
  39. Neurosci Res. 2016 Mar;104:4-15 - PubMed
  40. J Neurosci. 2015 Nov 18;35(46):15466-76 - PubMed
  41. PLoS Comput Biol. 2016 Mar 17;12(3):e1004734 - PubMed
  42. PLoS One. 2016 Oct 6;11(10):e0163713 - PubMed
  43. Sci Rep. 2017 Jan 20;7:41056 - PubMed
  44. Neurosci Biobehav Rev. 2017 Apr;75:65-90 - PubMed
  45. PLoS One. 2017 May 31;12(5):e0178304 - PubMed
  46. Child Dev Perspect. 2016 Mar;10(1):45-52 - PubMed
  47. Neuron. 2017 Aug 2;95(3):697-708.e4 - PubMed
  48. Dev Sci. 2018 Sep;21(5):e12651 - PubMed
  49. Cell Rep. 2018 Apr 17;23(3):725-732 - PubMed
  50. Science. 2018 Jun 15;360(6394):1204-1210 - PubMed
  51. Trends Cogn Sci. 2018 Dec;22(12):1076-1090 - PubMed
  52. Int J Behav Dev. 2019 Jan;43(1):35-42 - PubMed
  53. Science. 1985 Oct 25;230(4724):456-8 - PubMed
  54. Cereb Cortex. 1995 Sep-Oct;5(5):429-38 - PubMed
  55. Neuroreport. 1996 Oct 2;7(14):2325-30 - PubMed
  56. Science. 1997 Jul 11;277(5323):190-1 - PubMed
  57. Trends Neurosci. 1997 Aug;20(8):350-7 - PubMed
  58. Philos Trans R Soc Lond B Biol Sci. 1997 Oct 29;352(1360):1421-8 - PubMed
  59. Nature. 1998 Feb 19;391(6669):756 - PubMed
  60. Curr Opin Neurobiol. 1998 Dec;8(6):753-61 - PubMed

Publication Types