Display options
Share it on

J Biomech Eng. 2019 Mar 22; doi: 10.1115/1.4043259. Epub 2019 Mar 22.

In vivo Layer-specific Mechanical Characterization of Porcine Stomach Tissue using Ultrasound Elastography.

Journal of biomechanical engineering

Saurabh Dargar, Uwe Kruger, Suvranu De

Affiliations

  1. Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
  2. Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Mechanical, Aerospace, and Nuclear Engineering, , Rensselaer Polytechnic Institute, Troy, NY, USA.

PMID: 30901383 PMCID: PMC6808004 DOI: 10.1115/1.4043259

Abstract

This paper presents in vivo mechanical characterization of the muscularis, submucosa and mucosa of the porcine stomach wall under large deformation loading. This is important for the development of gastrointestinal pathology-specific surgical intervention techniques. The study is based on testing the cardiac and fundic glandular stomach regions using a custom-developed compression elastography setup. Particular attention has been paid to elucidate the heterogeneity and anisotropy of tissue response. A Fung hyperelastic material model has been used to model the mechanical response of each tissue layer. A univariate analysis comparing the initial shear moduli of the three layers indicates that the muscularis (5.69±4.06 kPa) is the stiffest followed by the submucosa (3.04±3.32 kPa) and the mucosa (0.56±0.28 kPa). The muscularis is found to be strongly distinguishable from the mucosa tissue in the cardiac and fundic region based on a multivariate discriminant analysis. The cardiac muscularis is observed to be stiffer than the fundic muscularis tissue (shear moduli of 7.96±3.82 kPa vs. 3.42±2.96 kPa), more anisotropic (anisotropic parameter of 2.21±0.77 vs. 1.41±0.38), and strongly distinguishable from its fundic counterpart. Finally, a univariate comparison of the in vivo and ex vivo initial shear moduli for each layer shows that the muscularis and submucosa tissues are softer while in vivo, but the mucosa tissue is stiffer while in vivo. The mechanical properties highlight the inhomogeneity and anisotropy of multilayer stomach tissue.

References

  1. IEEE Trans Med Imaging. 2010 Jan;29(1):196-205 - PubMed
  2. Am J Physiol. 1990 Mar;258(3 Pt 1):G338-43 - PubMed
  3. Gastrointest Endosc. 2006 Jul;64(1):82-9 - PubMed
  4. J Biomech. 2008 Aug 28;41(12):2673-80 - PubMed
  5. IEEE Trans Biomed Eng. 2017 Nov;64(11):2595-2606 - PubMed
  6. Med Eng Phys. 2007 Oct;29(8):840-4 - PubMed
  7. Ann Biomed Eng. 1986;14(5):451-66 - PubMed
  8. Int J Non Linear Mech. 2012 Oct;47(8):938-949 - PubMed
  9. J Mech Behav Biomed Mater. 2013 Jul;23:117-32 - PubMed
  10. J Biomech Eng. 1992 Nov;114(4):461-6 - PubMed
  11. J Biomech Eng. 2004 Apr;126(2):264-75 - PubMed
  12. Dig Dis Sci. 2000 Jul;45(7):1260-6 - PubMed
  13. J Biomech. 2006;39(5):894-904 - PubMed
  14. Med Biol Eng Comput. 2007 Jan;45(1):99-106 - PubMed
  15. J Gastroenterol. 2006 Oct;41(10):929-42 - PubMed
  16. Gastroenterology. 1985 Jan;88(1 Pt 2):250-60 - PubMed
  17. Neurogastroenterol Motil. 2005 Jun;17(3):388-98 - PubMed
  18. J Mol Cell Cardiol. 1986 Jun;18(6):567-78 - PubMed
  19. J Biomech. 2008 Dec 5;41(16):3441-7 - PubMed
  20. J Clin Gastroenterol. 1993;17 Suppl 1:S70-7 - PubMed
  21. Ann Biomed Eng. 2012 Dec;40(12):2541-50 - PubMed
  22. J Biomech. 2009 Dec 11;42(16):2654-63 - PubMed
  23. J Mech Behav Biomed Mater. 2010 Jan;3(1):124-9 - PubMed
  24. J Theor Biol. 2006 Jan 21;238(2):290-302 - PubMed
  25. Gastroenterology. 2011 Jan;140(1):82-90 - PubMed
  26. J Biomech. 1995 Jul;28(7):863-7 - PubMed
  27. J Biomech. 1992 Sep;25(9):1027-45 - PubMed
  28. Gut. 2001 Feb;48(2):225-9 - PubMed
  29. Endoscopy. 2010 Apr;42(4):265-71 - PubMed
  30. Acta Biomater. 2013 Dec;9(12):9379-91 - PubMed
  31. Surg Endosc. 2009 Nov;23(11):2550-5 - PubMed
  32. Gastrointest Endosc Clin N Am. 2016 Apr;26(2):283-295 - PubMed
  33. Med Eng Phys. 2009 Nov;31(9):1056-62 - PubMed
  34. J Biomech. 1976;9(10):649-57 - PubMed
  35. Am J Physiol. 1998 Aug;275(2):G187-91 - PubMed
  36. J Biomech. 2015 Feb 26;48(4):651-8 - PubMed
  37. Physiol Meas. 2011 Dec;32(12):1969-82 - PubMed
  38. Dig Dis Sci. 1997 Nov;42(11):2317-26 - PubMed
  39. Am J Gastroenterol. 1995 Mar;90(3):431-8 - PubMed
  40. J Physiol Pharmacol. 1999 Jun;50(2):211-25 - PubMed
  41. J Biomech. 1999 Oct;32(10):1037-47 - PubMed
  42. J Acoust Soc Am. 2006 Apr;119(4):2114-21 - PubMed
  43. Ann N Y Acad Sci. 2011 Sep;1232:331-40 - PubMed
  44. Ultrason Imaging. 1998 Oct;20(4):260-74 - PubMed
  45. Neurogastroenterol Motil. 2004 Dec;16(6):721-8 - PubMed

Publication Types

Grant support