Display options
Share it on

J Clin Biochem Nutr. 2019 Mar;64(2):112-123. doi: 10.3164/jcbn.18-80. Epub 2018 Nov 28.

Human-specific dual regulations of FXR-activation for reduction of fatty liver using .

Journal of clinical biochemistry and nutrition

Teruo Miyazaki, Akira Honda, Tadashi Ikegami, Takashi Iida, Yasushi Matsuzaki

Affiliations

  1. Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan.
  2. Department of Internal Medicine, Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Inashiki, Ibaraki 300-0395, Japan.
  3. Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.

PMID: 30936623 PMCID: PMC6436045 DOI: 10.3164/jcbn.18-80

Abstract

Nuclear receptor farnesoid X receptor activation inhibits fatty acid synthesis through the liver X receptor-α-sterol regulatory element binding protein-1c pathway universally in animals, but also has human-specific crosstalk with the peroxisome proliferator-activated receptor-α. The effects of farnesoid X receptor-ligands on both the synthesis and degradation of fatty liver through nuclear receptor-related regulation were investigated in both human and murine hepatocytes. A fatty liver culture cell model was established using a synthetic liver X receptor-α-ligand (To901317) for both human and mouse non-neoplastic hepatocytes. The hepatocytes were exposed to natural or synthetic farnesoid X receptor-ligands (bile acids, GW4064, obeticholic acid) together with or after To901317. Cellular triglyceride accumulation was significantly inhibited by the farnesoid X receptor-ligands along with inhibition of lipogenic genes and up-regulation of farnesoid X receptor-target small heterodimer partner in both human and mouse cells. The accumulated triglyceride was significantly degraded by the farnesoid X receptor-ligands only in the human cells accompanied with the up-regulations of peroxisome proliferator-activated receptor-α and fatty acid β-oxidation. Farnesoid X receptor-ligands can be therapeutic agents for treating human fatty liver through dual effects on inhibition of lipogenesis and on enhancement of lipolysis.

Keywords: bile acids; fatty liver; human-specific crosstalk; lipolysis; nuclear receptor ligand

Conflict of interest statement

No potential conflicts of interest were disclosed.

References

  1. Science. 1999 May 21;284(5418):1362-5 - PubMed
  2. Science. 1999 May 21;284(5418):1365-8 - PubMed
  3. Mol Cell. 1999 May;3(5):543-53 - PubMed
  4. Hepatology. 1999 Jul;30(1):6-13 - PubMed
  5. Endocr Rev. 1999 Oct;20(5):649-88 - PubMed
  6. J Med Chem. 2000 Aug 10;43(16):2971-4 - PubMed
  7. Genes Dev. 2000 Nov 15;14(22):2831-8 - PubMed
  8. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1477-82 - PubMed
  9. Gastroenterology. 2001 Apr;120(5):1183-92 - PubMed
  10. J Med Chem. 2002 Aug 15;45(17):3569-72 - PubMed
  11. Biochem J. 2003 Feb 1;369(Pt 3):539-47 - PubMed
  12. Nat Med. 2003 Feb;9(2):213-9 - PubMed
  13. Mol Endocrinol. 2003 Feb;17(2):259-72 - PubMed
  14. Mol Endocrinol. 2003 Mar;17(3):386-94 - PubMed
  15. Endocrinology. 2003 Jun;144(6):2201-7 - PubMed
  16. J Biol Chem. 2003 Dec 19;278(51):51085-90 - PubMed
  17. J Clin Invest. 2003 Dec;112(11):1678-87 - PubMed
  18. J Pharmacol Exp Ther. 2004 Apr;309(1):303-9 - PubMed
  19. J Clin Invest. 2004 May;113(10):1408-18 - PubMed
  20. J Med Chem. 2004 Aug 26;47(18):4559-69 - PubMed
  21. Gastroenterology. 2004 Nov;127(5):1497-512 - PubMed
  22. Clin Chim Acta. 2005 Aug;358(1-2):104-12 - PubMed
  23. J Biol Chem. 2006 Apr 21;281(16):11039-49 - PubMed
  24. Hepatology. 2007 Sep;46(3):823-30 - PubMed
  25. Biochim Biophys Acta. 2007 Sep;1767(9):1134-42 - PubMed
  26. Hepatol Res. 2008;38(2):123-31 - PubMed
  27. Rapid Commun Mass Spectrom. 2008 Nov;22(21):3434-42 - PubMed
  28. Hepatology. 2008 Nov;48(5):1632-43 - PubMed
  29. Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H272-81 - PubMed
  30. Am J Physiol Gastrointest Liver Physiol. 2009 Mar;296(3):G543-52 - PubMed
  31. Trends Pharmacol Sci. 2009 Nov;30(11):570-80 - PubMed
  32. J Lipid Res. 2010 Apr;51(4):771-84 - PubMed
  33. Gut. 2011 Apr;60(4):463-72 - PubMed
  34. Nucl Recept Signal. 2010 Nov 19;8:e005 - PubMed
  35. Science. 2011 Jun 24;332(6037):1519-23 - PubMed
  36. Mini Rev Med Chem. 2011 Aug;11(9):753-62 - PubMed
  37. Hepatology. 2011 Nov;54(5):1741-52 - PubMed
  38. Nat Rev Mol Cell Biol. 2012 Mar 14;13(4):213-24 - PubMed
  39. Drug Discov Today. 2012 Sep;17(17-18):988-97 - PubMed
  40. World J Gastroenterol. 2012 May 21;18(19):2300-8 - PubMed
  41. Hepatology. 2013 May;57(5):1931-41 - PubMed
  42. Gastroenterology. 2013 Sep;145(3):574-82.e1 - PubMed
  43. Lancet. 2015 Mar 14;385(9972):956-65 - PubMed
  44. Springerplus. 2015 Sep 15;4:494 - PubMed
  45. J Clin Biochem Nutr. 2016 Nov;59(3):199-206 - PubMed
  46. J Clin Biochem Nutr. 2017 Sep;61(2):85-90 - PubMed
  47. J Immunol Methods. 1986 May 22;89(2):271-7 - PubMed
  48. Int J Clin Pharmacol Biopharm. 1978 Nov;16(11):523-6 - PubMed
  49. N Engl J Med. 1973 Sep 27;289(13):655-9 - PubMed
  50. Br J Clin Pharmacol. 1978 Mar;5(3):249-54 - PubMed
  51. Drugs. 1981 Feb;21(2):90-119 - PubMed
  52. J Clin Pharmacol. 1981 Oct;21(10):436-42 - PubMed
  53. J Gastroenterol. 1995 Feb;30(1):61-6 - PubMed
  54. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):674-8 - PubMed
  55. Anticancer Res. 1998 Sep-Oct;18(5A):3533-8 - PubMed
  56. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):266-71 - PubMed

Publication Types