Display options
Share it on

Iperception. 2019 Mar 16;10(2):2041669519837263. doi: 10.1177/2041669519837263. eCollection 2019.

Influence of Multiple Types of Proximity on the Degree of Visual Crowding Effects Within a Single Gap Detection Task.

i-Perception

Daisuke Hayashi, Madoka Ohnishi

Affiliations

  1. Department of Psychology, The University of Tokyo, Japan; Faculty of Human Informatics, Aichi Shukutoku University, Japan.
  2. Graduate School of Humanities and Sciences, Tokyo Woman's Christian University, Japan; IdeaLab Inc., Tokyo, Japan.

PMID: 30906517 PMCID: PMC6421615 DOI: 10.1177/2041669519837263

Abstract

The visual system cannot recognize an object (target) in peripheral vision when presented with neighboring similar stimuli (flanker). This object recognition disability is known as crowding. Studies have shown that various types of proximity, such as spatial distance or semantic category, affect the degree of crowding. However, thus far, these effects have mostly been studied separately. Hence, their underlying similarities and differences are still unknown. In this study, we developed a novel gap detection task and tested whether the effect of three different types of proximity in crowding (the relative position between target gap and nearest flanker edge, the flanker location compared with the target location, and the semantic category of the target) can be measured within a single task. A psychometric function analysis revealed that two of the assumed types of proximity affected the degree of crowding within a single task.

Keywords: crowding; gap detection; peripheral vision; proximity; spatial vision

References

  1. Percept Psychophys. 1999 Jan;61(1):177-89 - PubMed
  2. Vision Res. 2001 Jun;41(14):1833-50 - PubMed
  3. Psychol Rev. 1975 May;82(3):184-99 - PubMed
  4. Am J Psychol. 1957 Mar;70(1):97-101 - PubMed
  5. J Opt Soc Am. 1963 Sep;53:1026-32 - PubMed
  6. Vision Res. 1992 Jul;32(7):1349-57 - PubMed
  7. Vision Res. 2003 Dec;43(27):2895-904 - PubMed
  8. J Vis. 2004 Dec 30;4(12):1136-69 - PubMed
  9. J Vis. 2007 Oct 29;7(13):9.1-15 - PubMed
  10. J Vis. 2007 Feb 08;7(2):6.1-15 - PubMed
  11. J Vis. 2007 Mar 06;7(2):8.1-9 - PubMed
  12. J Vis. 2007 Mar 27;7(2):11.1-13 - PubMed
  13. J Vis. 2007 Apr 25;7(2):12.1-9 - PubMed
  14. J Vis. 2007 Jul 17;7(2):14.1-11 - PubMed
  15. J Vis. 2007 Nov 26;7(2):24.1-11 - PubMed
  16. Vision Res. 2008 Feb;48(5):635-54 - PubMed
  17. Nat Neurosci. 2008 Oct;11(10):1129-35 - PubMed
  18. Curr Biol. 2009 Jan 27;19(2):127-32 - PubMed
  19. J Vis. 2009 Jun 29;9(6):18.1-15 - PubMed
  20. Vision Res. 2010 Oct 28;50(22):2248-60 - PubMed
  21. J Vis. 2010 Jun 01;10(6):15 - PubMed
  22. Trends Cogn Sci. 2011 Apr;15(4):160-8 - PubMed
  23. J Vis. 2011 Apr 01;11(4):null - PubMed
  24. Vision Res. 2012 Jan 1;52(1):61-9 - PubMed
  25. J Vis. 2011 Dec 01;11(5):13 - PubMed
  26. Nat Neurosci. 2012 Jan 08;15(3):463-9, S1-2 - PubMed
  27. J Vis. 2013 Jan 18;13(1):24 - PubMed
  28. J Vis. 2014 Oct 16;14(6):null - PubMed
  29. J Vis. 2014 Dec 10;14(6):10 - PubMed
  30. Vision Res. 2016 May;122:21-33 - PubMed
  31. Front Psychol. 2018 Jul 23;9:1250 - PubMed
  32. Vision Res. 1973 Apr;13(4):767-82 - PubMed
  33. Nature. 1970 Apr 11;226(5241):177-8 - PubMed
  34. Psychol Res. 1983;45(2):147-56 - PubMed
  35. Percept Psychophys. 1982 Dec;32(6):576-80 - PubMed
  36. Spat Vis. 1994;8(2):255-79 - PubMed
  37. Vision Res. 1993 Jan;33(2):173-93 - PubMed
  38. Spat Vis. 1997;10(4):437-42 - PubMed
  39. Spat Vis. 1997;10(4):443-6 - PubMed
  40. J Opt Soc Am A Opt Image Sci Vis. 1997 Sep;14(9):2057-68 - PubMed

Publication Types