Display options
Share it on

Nat Biomed Eng. 2018 Oct;2(10):732-740. doi: 10.1038/s41551-018-0282-2. Epub 2018 Sep 03.

Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia.

Nature biomedical engineering

Adityo Prakosa, Hermenegild J Arevalo, Dongdong Deng, Patrick M Boyle, Plamen P Nikolov, Hiroshi Ashikaga, Joshua J E Blauer, Elyar Ghafoori, Carolyn J Park, Robert C Blake, Frederick T Han, Rob S MacLeod, Henry R Halperin, David J Callans, Ravi Ranjan, Jonathan Chrispin, Saman Nazarian, Natalia A Trayanova

Affiliations

  1. Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
  2. Cardiac Modelling Department, Simula Research Laboratory, Fornebu, Norway.
  3. Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
  4. Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
  5. University of Utah Health Sciences Center, Salt Lake City, UT, USA.
  6. Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  7. Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. [email protected].
  8. Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. [email protected].

PMID: 30847259 PMCID: PMC6400313 DOI: 10.1038/s41551-018-0282-2

Abstract

Ventricular tachycardia (VT), which can lead to sudden cardiac death, occurs frequently in patients with myocardial infarction. Catheter-based radiofrequency ablation of cardiac tissue has achieved only modest efficacy, owing to the inaccurate identification of ablation targets by current electrical mapping techniques, which can lead to extensive lesions and to a prolonged, poorly tolerated procedure. Here we show that personalized virtual-heart technology based on cardiac imaging and computational modelling can identify optimal infarct-related VT ablation targets in retrospective animal (5 swine) and human studies (21 patients) and in a prospective feasibility study (5 patients). We first assessed in retrospective studies (one of which included a proportion of clinical images with artifacts) the capability of the technology to determine the minimum-size ablation targets for eradicating all VTs. In the prospective study, VT sites predicted by the technology were targeted directly, without relying on prior electrical mapping. The approach could improve infarct-related VT ablation guidance, where accurate identification of patient-specific optimal targets could be achieved on a personalized virtual heart prior to the clinical procedure.

Conflict of interest statement

Competing Interests. NAT holds partial ownership of CardioSolv Ablation Technologies LLC. SN is a scientific advisor to CardioSolv Ablation Technologies LLC. The other authors declare no competing fin

References

  1. J Am Coll Cardiol. 2000 May;35(6):1442-9 - PubMed
  2. J Am Coll Cardiol. 2000 Jun;35(7):1905-14 - PubMed
  3. Circulation. 2000 Aug 8;102(6):698-705 - PubMed
  4. Circulation. 2002 Jan 29;105(4):539-42 - PubMed
  5. Am J Physiol Heart Circ Physiol. 2003 Jan;284(1):H372-84 - PubMed
  6. J Am Coll Cardiol. 2003 Jun 4;41(11):2036-43 - PubMed
  7. Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 - PubMed
  8. IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1124-37 - PubMed
  9. J Cardiovasc Electrophysiol. 2005 May;16(5):465-71 - PubMed
  10. Circ Res. 2005 Jul 22;97(2):168-75 - PubMed
  11. Heart Rhythm. 2006 May;3(5):503-12 - PubMed
  12. Circulation. 2007 Apr 17;115(15):2006-14 - PubMed
  13. Heart Rhythm. 2007 May;4(5):595-602 - PubMed
  14. J Cardiovasc Electrophysiol. 2007 Dec;18(12):1269-76 - PubMed
  15. Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):3-18 - PubMed
  16. Biophys J. 2007 Nov 15;93(10):3714-26 - PubMed
  17. Philos Trans A Math Phys Eng Sci. 2008 Sep 28;366(1879):3381-409 - PubMed
  18. IEEE Trans Biomed Eng. 2009 May;56(5):1318-30 - PubMed
  19. Heart Rhythm. 2009 Jun;6(6):886-933 - PubMed
  20. J Cardiovasc Electrophysiol. 2009 Aug;20(8):850-5 - PubMed
  21. J Cardiovasc Electrophysiol. 2010 Jul;21(7):799-803 - PubMed
  22. Biomech Model Mechanobiol. 2011 Jun;10(3):295-306 - PubMed
  23. Am J Physiol Heart Circ Physiol. 2010 Nov;299(5):H1588-97 - PubMed
  24. Heart Rhythm. 2011 Dec;8(12):1942-9 - PubMed
  25. J Physiol. 2012 Sep 15;590(18):4537-51 - PubMed
  26. Ann Biomed Eng. 2012 Oct;40(10):2243-54 - PubMed
  27. Heart Rhythm. 2013 Aug;10(8):1109-16 - PubMed
  28. PLoS One. 2013 Jul 02;8(7):e68872 - PubMed
  29. Circ Arrhythm Electrophysiol. 2013 Dec;6(6):1131-8 - PubMed
  30. Circulation. 2014 Feb 25;129(8):831-3 - PubMed
  31. Heart Rhythm. 2014 Oct;11(10):1693-700 - PubMed
  32. Prog Biophys Mol Biol. 2014 Aug;115(2-3):226-34 - PubMed
  33. J Cardiovasc Electrophysiol. 2015 Oct;26(10):1117-26 - PubMed
  34. Front Physiol. 2015 Oct 13;6:282 - PubMed
  35. Heart Rhythm. 2016 Aug;13(8):1687-98 - PubMed
  36. Nat Commun. 2016 May 10;7:11437 - PubMed
  37. J Cardiovasc Magn Reson. 2017 Jan 11;19(1):9 - PubMed
  38. Circulation. 1988 Mar;77(3):589-606 - PubMed
  39. Circulation. 1998 May 5;97(17):1746-54 - PubMed
  40. Circulation. 1998 Jul 28;98(4):308-14 - PubMed
  41. Am J Cardiol. 1998 Aug 15;82(4):429-32 - PubMed

Publication Types

Grant support