Display options
Share it on

J Extracell Vesicles. 2019 Mar 18;8(1):1590116. doi: 10.1080/20013078.2019.1590116. eCollection 2019.

Highlights of the mini-symposium on extracellular vesicles in inter-organismal communication, held in Munich, Germany, August 2018.

Journal of extracellular vesicles

E Bielska, P R J Birch, A H Buck, C Abreu-Goodger, R W Innes, H Jin, M W Pfaffl, S Robatzek, N Regev-Rudzki, C Tisserant, S Wang, A Weiberg

Affiliations

  1. Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.
  2. Division of Plant Sciences, School of Life Science, University of Dundee (at James Hutton Institute), Dundee, UK.
  3. Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
  4. Centro de Investigación y Estudios Avanzados del IPN (Cinvestav), Unidad de Genómica Avanzada (Langebio), Guanajuato, Mexico.
  5. Department of Biology, Indiana University, Bloomington, IN, USA.
  6. Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
  7. Division of Animal Physiology and Immunology, TUM School of Life Sciences, Weihenstephan, Technical University of Munich, Freising, Germany.
  8. Biocenter, Ludwig-Maximilians University Munich, Martinsried, Germany.
  9. Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.

PMID: 30911363 PMCID: PMC6427632 DOI: 10.1080/20013078.2019.1590116

Abstract

All living organisms secrete molecules for intercellular communication. Recent research has revealed that extracellular vesicles (EVs) play an important role in inter-organismal cell-to-cell communication by transporting diverse messenger molecules, including RNA, DNA, lipids and proteins. These discoveries have raised fundamental questions regarding EV biology. How are EVs biosynthesized and loaded with messenger/cargo molecules? How are EVs secreted into the extracellular matrix? What are the EV uptake mechanisms of recipient cells? As EVs are produced by all kind of organisms, from unicellular bacteria and protists, filamentous fungi and oomycetes, to complex multicellular life forms such as plants and animals, basic research in diverse model systems is urgently needed to shed light on the multifaceted biology of EVs and their role in inter-organismal communications. To help catalyse progress in this emerging field, a mini-symposium was held in Munich, Germany in August 2018. This report highlights recent progress and major questions being pursued across a very diverse group of model systems, all united by the question of how EVs contribute to inter-organismal communication.

Keywords: Extracellular vesicles (EVs); bacteria; cell-to-cell communication; fungi; inter-organismal interactions; nematodes; oomycetes; plants; protists; small RNAs

References

  1. Appl Environ Microbiol. 2004 Nov;70(11):6800-8 - PubMed
  2. Genes Dev. 2005 Nov 15;19(22):2645-55 - PubMed
  3. Nature. 2007 Nov 1;450(7166):115-8 - PubMed
  4. BMC Microbiol. 2008 Jun 02;8:87 - PubMed
  5. FEBS Lett. 2009 Oct 20;583(20):3363-6 - PubMed
  6. Infect Immun. 2010 Apr;78(4):1601-9 - PubMed
  7. Cell Res. 2012 Jan;22(1):107-26 - PubMed
  8. Nucleic Acids Res. 2012 Jan;40(Database issue):D1241-4 - PubMed
  9. Res Microbiol. 2012 Nov-Dec;163(9-10):607-18 - PubMed
  10. PLoS Biol. 2012;10(12):e1001450 - PubMed
  11. RNA Biol. 2013 Jul;10(7):1080-6 - PubMed
  12. J Extracell Vesicles. 2013 Mar 19;2:null - PubMed
  13. Science. 2013 Oct 4;342(6154):118-23 - PubMed
  14. Med Mycol. 2014 Feb;52(2):202-10 - PubMed
  15. Mol Plant Pathol. 2015 May;16(4):413-34 - PubMed
  16. Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):E3910-8 - PubMed
  17. Bioinformatics. 2015 Mar 15;31(6):933-9 - PubMed
  18. Nat Commun. 2014 Nov 25;5:5488 - PubMed
  19. J Extracell Vesicles. 2014 Dec 22;3:26913 - PubMed
  20. Curr Opin Biotechnol. 2015 Apr;32:207-215 - PubMed
  21. Phytopathology. 2015 Jul;105(7):966-81 - PubMed
  22. J Bacteriol. 2015 Sep;197(17):2879-93 - PubMed
  23. Trends Parasitol. 2015 Oct;31(10):477-489 - PubMed
  24. Front Plant Sci. 2015 Sep 23;6:766 - PubMed
  25. Sci Rep. 2016 Jan 12;6:18598 - PubMed
  26. Mol Plant Microbe Interact. 2016 May;29(5):374-84 - PubMed
  27. G3 (Bethesda). 2016 Jul 07;6(7):2103-11 - PubMed
  28. J Allergy Clin Immunol. 2016 Sep;138(3):666-675 - PubMed
  29. Nat Plants. 2016 Sep 19;2:16151 - PubMed
  30. Curr Opin Microbiol. 2016 Dec;34:127-135 - PubMed
  31. Plant Physiol. 2017 Jan;173(1):728-741 - PubMed
  32. Nat Methods. 2017 Feb 28;14(3):228-232 - PubMed
  33. Circ Res. 2017 May 12;120(10):1632-1648 - PubMed
  34. Cell Rep. 2017 May 23;19(8):1545-1557 - PubMed
  35. Genes Nutr. 2017 Jun 22;12:15 - PubMed
  36. New Phytol. 2017 Oct;216(1):205-215 - PubMed
  37. MBio. 2017 Sep 5;8(5): - PubMed
  38. J Extracell Vesicles. 2017 Nov 15;6(1):1396823 - PubMed
  39. Nat Commun. 2017 Dec 7;8(1):1985 - PubMed
  40. Nat Commun. 2018 Apr 19;9(1):1556 - PubMed
  41. F1000Res. 2018 Feb 28;7:244 - PubMed
  42. Parasite Immunol. 2018 Jul;40(7):e12536 - PubMed
  43. Front Immunol. 2018 Apr 30;9:850 - PubMed
  44. Science. 2018 Jun 8;360(6393):1126-1129 - PubMed
  45. Front Immunol. 2018 May 24;9:1011 - PubMed
  46. J Nutr Biochem. 2018 Sep;59:123-128 - PubMed
  47. J Mater Chem B. 2018 Mar 7;6(9):1312-1321 - PubMed
  48. J Extracell Vesicles. 2017 Nov 26;6(1):1407213 - PubMed
  49. Sci Rep. 2018 Jul 27;8(1):11321 - PubMed
  50. MBio. 2018 Aug 28;9(4): - PubMed
  51. Front Microbiol. 2018 Sep 12;9:2182 - PubMed
  52. Cell Host Microbe. 2019 Jan 9;25(1):153-165.e5 - PubMed
  53. J Extracell Vesicles. 2018 Nov 23;7(1):1535750 - PubMed
  54. Plant Cell. 2019 Feb;31(2):315-324 - PubMed
  55. Nucleic Acids Res. 2019 Mar 01;:null - PubMed
  56. Clin Neuropathol. 1987 Jan-Feb;6(1):19-24 - PubMed
  57. J Gen Microbiol. 1967 Oct;49(1):1-11 - PubMed
  58. J Cell Biol. 1969 Apr;41(1):59-72 - PubMed

Publication Types