Display options
Share it on

Front Neurosci. 2019 Feb 25;13:72. doi: 10.3389/fnins.2019.00072. eCollection 2019.

A Diet With Docosahexaenoic and Arachidonic Acids as the Sole Source of Polyunsaturated Fatty Acids Is Sufficient to Support Visual, Cognitive, Motor, and Social Development in Mice.

Frontiers in neuroscience

Sarah J Carlson, Alison A O'Loughlin, Lorenzo Anez-Bustillos, Meredith A Baker, Nicholas A Andrews, Georgia Gunner, Duy T Dao, Amy Pan, Prathima Nandivada, Melissa Chang, Eileen Cowan, Paul D Mitchell, Kathleen M Gura, Michela Fagiolini, Mark Puder

Affiliations

  1. Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, United States.
  2. Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Program in Neuroscience, Harvard Medical School, Boston, MA, United States.
  3. Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, United States.
  4. Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, United States.
  5. Department of Pharmacy, Boston Children's Hospital, Boston, MA, United States.

PMID: 30858795 PMCID: PMC6397844 DOI: 10.3389/fnins.2019.00072

Abstract

Polyunsaturated fatty acids serve multiple functions in neurodevelopment and neurocognitive function. Intravenous lipid emulsions are administered to children that are dependent on parenteral nutrition to provide the essential fatty acids needed to sustain growth and development. One of these emulsions, derived from fish-oil, is particularly poor in the traditional essential fatty acids, linoleic and alpha-linolenic acids. However, it does contain adequate amounts of its main derivatives, arachidonic acid (ARA) and docosahexaenoic acid (DHA), respectively. This skewed composition has raised concern about the sole use of fish-oil based lipid emulsions in children and how its administration can be detrimental to their neurodevelopment. Using a custom-made diet that contains ARA and DHA as a sole source of polyunsaturated fatty acids, we bred and fed mice for multiple generations. Compared to adult, chow-fed mice, animals maintained on this special diet showed similar outcomes in a battery of neurocognitive tests performed under controlled conditions. Chow-fed mice did perform better in the rotarod test for ataxia and balance, although both experimental groups showed a conserved motor learning capacity. Conversely, mice fed the custom diet rich in DHA and ARA showed less neophobia than the chow-fed animals. Results from these experiments suggest that providing a diet where ARA and DHA are the sole source of polyunsaturated fatty acids is sufficient to support gross visual, cognitive, motor, and social development in mice.

Keywords: arachidonic acid (AA); diet; docosahexaenoic acid (DHA); neurocognition; omega-3 fatty acids; polyunsaturated fatty acid (PUFA)

References

  1. Neurosci Lett. 2001 Jun 22;306(1-2):89-92 - PubMed
  2. Behav Brain Res. 2001 Nov 1;125(1-2):43-7 - PubMed
  3. J Biol Chem. 1957 May;226(1):497-509 - PubMed
  4. Nutr Rev. 1958 Feb;16(2):33-5 - PubMed
  5. J Nutr Health Aging. 2004;8(3):163-74 - PubMed
  6. J Pediatr. 1992 Apr;120(4 Pt 2):S129-38 - PubMed
  7. Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4611-6 - PubMed
  8. J Pediatr Surg. 2005 May;40(5):755-62 - PubMed
  9. Clin Nutr. 2005 Oct;24(5):839-47 - PubMed
  10. Am J Clin Nutr. 2005 Aug;82(2):281-95 - PubMed
  11. Pediatr Res. 2005 Nov;58(5):865-72 - PubMed
  12. Br J Nutr. 2006 Mar;95(3):462-8 - PubMed
  13. Clin Nutr. 1996 Feb;15(1):24-8 - PubMed
  14. Biotechnol J. 2006 Apr;1(4):420-39 - PubMed
  15. Prostaglandins Leukot Essent Fatty Acids. 2006 Oct-Nov;75(4-5):329-49 - PubMed
  16. J Psychopharmacol. 2007 Mar;21(2):134-5 - PubMed
  17. J Nutr. 2007 Apr;137(4):855-9 - PubMed
  18. Pediatrics. 2008 Mar;121(3):e678-86 - PubMed
  19. Metabolism. 2008 May;57(5):698-707 - PubMed
  20. Postepy Biochem. 2008;54(3):242-50 - PubMed
  21. Int J Dev Neurosci. 2009 Oct;27(6):599-605 - PubMed
  22. Prostaglandins Leukot Essent Fatty Acids. 2009 Aug-Sep;81(2-3):165-70 - PubMed
  23. Neuropsychopharmacology. 2009 Nov;34(12):2560-73 - PubMed
  24. Ann Surg. 2009 Sep;250(3):395-402 - PubMed
  25. J Pediatr Gastroenterol Nutr. 2010 Feb;50(2):212-8 - PubMed
  26. Neurosurgery. 2011 Feb;68(2):474-81; discussion 481 - PubMed
  27. Curr Protoc Neurosci. 2011 Jul;Chapter 8:Unit 8.26 - PubMed
  28. Brain Behav Immun. 2011 Nov;25(8):1725-34 - PubMed
  29. J Neurotrauma. 2011 Oct;28(10):2113-22 - PubMed
  30. J Alzheimers Dis. 2012;28(1):191-209 - PubMed
  31. Aging Cell. 2012 Dec;11(6):1046-54 - PubMed
  32. Mol Nutr Food Res. 2013 Jun;57(6):1110-4 - PubMed
  33. Pharmacol Rep. 2013;65(1):59-68 - PubMed
  34. Behav Brain Funct. 2013 Jun 14;9:25 - PubMed
  35. JPEN J Parenter Enteral Nutr. 2014 Aug;38(6):693-701 - PubMed
  36. Restor Neurol Neurosci. 2013;31(5):647-59 - PubMed
  37. J Neurosci. 2013 Nov 6;33(45):17789-96 - PubMed
  38. Adv Nutr. 2013 Nov 06;4(6):672-6 - PubMed
  39. Nat Protoc. 2013 Dec;8(12):2531-7 - PubMed
  40. Adv Nutr. 2014 Jan 01;5(1):65-70 - PubMed
  41. Neonatology. 2014;105(4):290-6 - PubMed
  42. J Nutr Biochem. 2015 Jan;26(1):24-35 - PubMed
  43. Behav Brain Res. 2015 Feb 15;279:129-38 - PubMed
  44. Psychoneuroendocrinology. 2015 Aug;58:79-90 - PubMed
  45. J Child Adolesc Psychopharmacol. 2015 Sep;25(7):526-34 - PubMed
  46. Pharmacol Biochem Behav. 1986 Mar;24(3):525-9 - PubMed
  47. Clin Nutr. 2018 Jun;37(3):784-789 - PubMed
  48. Prostaglandins Leukot Essent Fatty Acids. 2017 Dec;127:32-39 - PubMed
  49. Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12525-12530 - PubMed
  50. J Lipid Res. 1968 Sep;9(5):570-9 - PubMed
  51. Neurosci Res. 1995 Jul;22(4):423-6 - PubMed
  52. Am J Clin Nutr. 1996 Oct;64(4):577-86 - PubMed
  53. J Neurochem. 1997 Aug;69(2):504-13 - PubMed
  54. Acta Med Scand. 1976;200(1-2):69-73 - PubMed

Publication Types

Grant support