Display options
Share it on

World J Stem Cells. 2019 Mar 26;11(3):180-195. doi: 10.4252/wjsc.v11.i3.180.

Circulating factors present in the sera of naturally skinny people may influence cell commitment and adipocyte differentiation of mesenchymal stromal cells.

World journal of stem cells

Nicola Alessio, Tiziana Squillaro, Vincenzo Monda, Gianfranco Peluso, Marcellino Monda, Mariarosa Ab Melone, Umberto Galderisi, Giovanni Di Bernardo

Affiliations

  1. Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples 80138, Italy.
  2. Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, 2 Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples 80138, Italy.
  3. Department of Experimental Medicine, Human Physiology and Unit of Dietetic and Sports Medicine Section, University of Campania Luigi Vanvitelli, Naples 80138, Italy.
  4. Institute Bioscience and BioResources, CNR, Naples 80131, Italy.
  5. Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples 80138, Italy. [email protected].

PMID: 30949296 PMCID: PMC6441938 DOI: 10.4252/wjsc.v11.i3.180

Abstract

BACKGROUND: Research on physiopathology of obesity may receive new hints from studies on skinny people (SP). These are individuals who show a poor or null gaining of body weight, in spite of high-calorie intake, by far exceeding the body requirements.

AIM: To evaluate how circulating factors present in the SP sera may affect adipogenesis of mesenchymal stromal cells (MSCs).

METHODS: We isolated MSCs from bone marrow of healthy donors with both normal body mass index (BMI) and caloric consumption. MSC cultures were primed with sera collected from SP or normal people (NP). Then biomolecular assays were performed to evaluate effect on proliferation, apoptosis, senescence, cell commitment, and differentiation.

RESULTS: SP priming affected adipocyte cell commitment and reduced spontaneous adipogenesis. Moreover, an in-depth analysis of exogenous-induced adipocyte differentiation showed striking differences between differentiation in SP-primed samples compared with NP ones. In adipocytes from SP cultures we observed a reduced size of lipid droplets, an increased expression of adipose triglyceride lipase, along with high mitochondria content and ability to produce ATP in starvation condition. These data and the expression of UCP1 protein, indicated that SP pretreatment produced a bias toward brown adipocyte differentiation.

CONCLUSION: Our data suggest that sera from SP may promote brown adipogenesis rather that white adipocyte differentiation. This finding could explain why SP present normal body composition in spite of an excess of caloric intake. We hypothesize that some circulating components present in the blood of these individuals may favor brown adipogenesis at expense of white adipocyte production.

Keywords: Adipogenesis; Brown fat; Cytokines; Mesenchymal stromal cells; Senescence

Conflict of interest statement

Conflict-of-interest statement: The author has no conflict of interest to declare.

References

  1. J Cell Sci. 2000 Apr;113 ( Pt 7):1161-6 - PubMed
  2. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):2005-10 - PubMed
  3. J Cell Biochem Suppl. 2001;Suppl 36:144-55 - PubMed
  4. Nat Med. 2001 Aug;7(8):941-6 - PubMed
  5. J Clin Endocrinol Metab. 2001 Aug;86(8):3815-9 - PubMed
  6. Diabetes. 2006 Jan;55(1):148-57 - PubMed
  7. Cytotherapy. 2006;8(4):315-7 - PubMed
  8. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4401-6 - PubMed
  9. J Clin Endocrinol Metab. 2008 Nov;93(11):4360-6 - PubMed
  10. Diabetes Metab. 2009 Jun;35(3):198-205 - PubMed
  11. Cell Metab. 2011 Mar 2;13(3):238-40 - PubMed
  12. FEBS Lett. 2011 Jul 21;585(14):2279-84 - PubMed
  13. Reproduction. 2012 Apr;143(4):455-68 - PubMed
  14. ScientificWorldJournal. 2012;2012:278352 - PubMed
  15. Apoptosis. 2012 Sep;17(9):964-74 - PubMed
  16. Ann N Y Acad Sci. 2013 Apr;1281:178-90 - PubMed
  17. Cell Mol Life Sci. 2013 May;70(9):1637-51 - PubMed
  18. Arch Med Sci. 2013 Apr 20;9(2):191-200 - PubMed
  19. Diabetologia. 2013 Nov;56(11):2467-76 - PubMed
  20. Nat Rev Endocrinol. 2014 Jan;10(1):24-36 - PubMed
  21. Cell Mol Biol (Noisy-le-grand). 2013 Nov 06;Suppl 59:OL1889-93 - PubMed
  22. Stem Cell Res Ther. 2014 Jan 09;5(1):4 - PubMed
  23. World J Stem Cells. 2014 Jan 26;6(1):33-42 - PubMed
  24. Nat Genet. 2014 May;46(5):492-7 - PubMed
  25. Lancet. 2015 Jun 13;385(9985):2400-9 - PubMed
  26. Dev Cell. 2015 Mar 23;32(6):678-92 - PubMed
  27. Cell Metab. 2015 Sep 1;22(3):418-26 - PubMed
  28. Cell Transplant. 2016;25(5):829-48 - PubMed
  29. J Hepatol. 2016 May;64(5):1176-1186 - PubMed
  30. J Physiol. 2016 Sep 15;594(18):5285-301 - PubMed
  31. Nutr Today. 2015 May;50(3):117-128 - PubMed
  32. Med Hypotheses. 2016 Aug;93:21-6 - PubMed
  33. N Engl J Med. 2017 Jul 6;377(1):13-27 - PubMed
  34. Eat Weight Disord. 2018 Feb;23(1):3-14 - PubMed
  35. Lancet. 1980 May 24;1(8178):1103-4 - PubMed
  36. Minerva Endocrinol. 1993 Mar;18(1):27-35 - PubMed

Publication Types