Display options
Share it on

Transl Vis Sci Technol. 2019 Feb 28;8(1):24. doi: 10.1167/tvst.8.1.24. eCollection 2019.

Steady-State Visually Evoked Potentials Elicited by Multifrequency Pattern-Reversal Stimulation.

Translational vision science & technology

Bettina Hohberger, Jan Kremers, Folkert K Horn

Affiliations

  1. Department of Ophthalmology and Eye Hospital, University Hospital Erlangen, Germany.

PMID: 30834172 PMCID: PMC6396688 DOI: 10.1167/tvst.8.1.24

Abstract

PURPOSE: It has been shown that multifrequency stimulation with multifocal electroretinography can reduce recording time without a loss in signal-to-noise ratio. Here, we studied the applicability of multifrequency stimulations for steady-state visually evoked potential (VEP) recordings.

METHODS: Multifrequency VEPs were recorded monocularly from 10 healthy subjects using pattern-reversal stimuli. The reversal frequency varied between 5 and 30 Hz. Pattern-reversal checkerboard stimuli were generated using four square arrays, each containing 100 light-emitting diodes (LEDs), positioned in four quadrants. Each array had a temporal frequency that differed slightly from the nominal frequency. The long duration of the data acquisition ensured that the slightly different stimulus frequencies in the four LED arrays can be resolved and that the responses to the stimulus in each array can be distinguished (e.g., with a frequency resolution: 0.011 Hz at 12 Hz). The best response from the four recording electrode configuration, defined as the recording with the maximal signal-to-noise ratio, was used for further analysis. Algorithmic latencies were calculated from the ratio of phase data and frequencies in a range of 4 and 20 Hz.

RESULTS: Quadrant-VEPs with simultaneous pattern-reversal stimulation yielded a significant dependency on temporal frequency and stimulus location. The frequency range leading to the maximal response amplitude was between 10 and 12 Hz. Response phases decreased approximately linearly, with increasing temporal frequency suggesting a mean algorithmic latency between 112 and 126 ms.

CONCLUSIONS: Multifrequency stimulation using LED arrays is an efficient method for recording pattern-reversal VEPs while all stimuli are presented at the same time.

TRANSLATIONAL RELEVANCE: Simultaneously recorded VEPs as performed by the multi-frequency method can be used for objective measurements of visual field defects.

Keywords: multifocal VEP; objective visual field test; pattern reversal; signal-to-noise ratio; steady-state

References

  1. Doc Ophthalmol. 1999;98(3):207-32 - PubMed
  2. Invest Ophthalmol Vis Sci. 2000 Nov;41(12):3827-32 - PubMed
  3. Ophthalmology. 2000 Dec;107(12):2283-99 - PubMed
  4. Arch Ophthalmol. 1975 Jan;93(1):9-18 - PubMed
  5. Doc Ophthalmol. 2002 May;104(3):287-302 - PubMed
  6. Doc Ophthalmol. 2002 May;104(3):303-20 - PubMed
  7. Clin Neurophysiol. 2002 Nov;113(11):1771-7 - PubMed
  8. Invest Ophthalmol Vis Sci. 2003 Mar;44(3):1364-75 - PubMed
  9. Graefes Arch Clin Exp Ophthalmol. 2003 Jun;241(6):505-10 - PubMed
  10. Neurosci Lett. 2003 May 22;342(3):191-5 - PubMed
  11. Neuroimage. 2003 Oct;20(2):975-86 - PubMed
  12. Doc Ophthalmol. 2004 Jan;108(1):1-8 - PubMed
  13. Vision Res. 1992 Mar;32(3):433-46 - PubMed
  14. Doc Ophthalmol. 2006 Jan;112(1):1-11 - PubMed
  15. Doc Ophthalmol. 2006 Jan;112(1):53-60 - PubMed
  16. Optom Vis Sci. 2008 Jul;85(7):547-58 - PubMed
  17. Comput Intell Neurosci. 2010;:702357 - PubMed
  18. Br J Ophthalmol. 2012 Apr;96(4):554-9 - PubMed
  19. Invest Ophthalmol Vis Sci. 2012 Mar 09;53(3):1306-14 - PubMed
  20. Clin Neurophysiol. 2012 Sep;123(9):1865-71 - PubMed
  21. Invest Ophthalmol Vis Sci. 2012 Aug 15;53(9):5527-35 - PubMed
  22. PLoS One. 2014 Jun 11;9(6):e99235 - PubMed
  23. Graefes Arch Clin Exp Ophthalmol. 2016 Feb;254(2):259-68 - PubMed
  24. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3068-72 - PubMed
  25. Can J Neurol Sci. 1989 May;16(2):168-79 - PubMed
  26. Vision Res. 1987;27(2):165-77 - PubMed
  27. Doc Ophthalmol. 1985 Feb;59(2):129-41 - PubMed
  28. Clin Phys Physiol Meas. 1985 Aug;6(3):239-46 - PubMed
  29. Electroencephalogr Clin Neurophysiol. 1974 May;36(5):547-50 - PubMed
  30. Electroencephalogr Clin Neurophysiol. 1974 Oct;37(4):403-6 - PubMed
  31. Electroencephalogr Clin Neurophysiol. 1966 Mar;20(3):238-48 - PubMed
  32. J Neurol Neurosurg Psychiatry. 1978 Jun;41(6):499-504 - PubMed
  33. Br J Ophthalmol. 1996 Apr;80(4):297-303 - PubMed
  34. Graefes Arch Clin Exp Ophthalmol. 1996 Aug;234 Suppl 1:S174-9 - PubMed
  35. Electroencephalogr Clin Neurophysiol. 1996 Sep;100(5):428-35 - PubMed
  36. Electroencephalogr Clin Neurophysiol. 1979 Nov;47(5):611-3 - PubMed
  37. Invest Ophthalmol Vis Sci. 1998 May;39(6):937-50 - PubMed

Publication Types