Display options
Share it on

Stem Cells Cloning. 2019 Feb 20;12:1-9. doi: 10.2147/SCCAA.S187655. eCollection 2019.

Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells.

Stem cells and cloning : advances and applications

Jasdeep Saini, Alessandro Faroni, Marwah Abd Al Samid, Adam J Reid, Adam P Lightfoot, Kamel Mamchaoui, Vincent Mouly, Gillian Butler-Browne, Jamie S McPhee, Hans Degens, Nasser Al-Shanti

Affiliations

  1. Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK, [email protected].
  2. Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
  3. Department of Plastic Surgery & Burns, University Hospitals of South Manchester, Manchester Academic Health Science Centre, Manchester, UK.
  4. Center for Research in Myology, Sorbonne Université- INSERM, Paris, France.
  5. Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK.
  6. Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.
  7. University of Medicine and Pharmacy of Targu Mures, Targu Mures, Romania.

PMID: 30863121 PMCID: PMC6388735 DOI: 10.2147/SCCAA.S187655

Abstract

BACKGROUND: Neuromuscular junctions (NMJs) consist of the presynaptic cholinergic motoneuron terminals and the corresponding postsynaptic motor endplates on skeletal muscle fibers. At the NMJ the action potential of the neuron leads, via release of acetylcholine, to muscle membrane depolarization that in turn is translated into muscle contraction and physical movement. Despite the fact that substantial NMJ research has been performed, the potential of in vivo NMJ investigations is inadequate and difficult to employ. A simple and reproducible in vitro NMJ model may provide a robust means to study the impact of neurotrophic factors, growth factors, and hormones on NMJ formation, structure, and function.

METHODS: This report characterizes a novel in vitro NMJ model utilizing immortalized human skeletal muscle stem cells seeded on 35 mm glass-bottom dishes, cocultured and innervated with spinal cord explants from rat embryos at ED 13.5. The cocultures were fixed and stained on day 14 for analysis and assessment of NMJ formation and development.

RESULTS: This unique serum- and trophic factor-free system permits the growth of cholinergic motoneurons, the formation of mature NMJs, and the development of highly differentiated contractile myotubes, which exhibit appropriate configuration of transversal triads, representative of in vivo conditions.

CONCLUSION: This coculture system provides a tool to study vital features of NMJ formation, regulation, maintenance, and repair, as well as a model platform to explore neuromuscular diseases and disorders affecting NMJs.

Keywords: NMJ; coculture; motoneuron; motor neuron; myoblast; myotube; neuromuscular junction

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

References

  1. Annu Rev Neurosci. 1999;22:389-442 - PubMed
  2. J Physiol. 2003 Sep 1;551(Pt 2):467-78 - PubMed
  3. J Cell Biol. 2004 Mar 29;164(7):1077-87 - PubMed
  4. Proc Natl Acad Sci U S A. 2004 May 4;101(18):7123-8 - PubMed
  5. Lab Invest. 2004 Oct;84(10):1271-8 - PubMed
  6. Toxicol Sci. 2004 Dec;82(2):525-33 - PubMed
  7. Eur J Neurosci. 2004 Dec;20(11):2865-71 - PubMed
  8. Nat Biotechnol. 2005 Feb;23(2):215-21 - PubMed
  9. Acta Myol. 2005 Oct;24(2):128-33 - PubMed
  10. Philos Trans R Soc Lond B Biol Sci. 2006 Sep 29;361(1473):1531-44 - PubMed
  11. Neuroscience. 2007 May 11;146(2):481-8 - PubMed
  12. Am J Physiol Cell Physiol. 2008 Jan;294(1):C66-73 - PubMed
  13. Biomaterials. 2009 Jul;30(21):3567-72 - PubMed
  14. Biomaterials. 2010 Jun;31(18):4880-8 - PubMed
  15. PLoS Med. 2010 Mar 30;7(3):e1000245 - PubMed
  16. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14863-8 - PubMed
  17. Biomaterials. 2010 Nov;31(32):8218-27 - PubMed
  18. Biomaterials. 2011 Dec;32(36):9602-11 - PubMed
  19. Skelet Muscle. 2011 Nov 01;1:34 - PubMed
  20. Stem Cell Rev. 2013 Aug;9(4):475-92 - PubMed
  21. J Vis Exp. 2012 Apr 12;(62):null - PubMed
  22. PLoS One. 2012;7(5):e36049 - PubMed
  23. Somat Cell Mol Genet. 1990 Nov;16(6):557-65 - PubMed
  24. Genes Dev. 2012 Aug 15;26(16):1874-84 - PubMed
  25. PLoS One. 2013 Apr 23;8(4):e61540 - PubMed
  26. EMBO Mol Med. 2013 Dec;5(12):1887-900 - PubMed
  27. Nature. 1987 Feb 19-25;325(6106):717-20 - PubMed
  28. Biomater Sci. 2014 Jan 1;2(1):131-138 - PubMed
  29. Annu Rev Anim Biosci. 2013 Jan;1:203-19 - PubMed
  30. Stem Cell Res. 2015 Sep;15(2):328-36 - PubMed
  31. Cell Mol Life Sci. 2016 Nov;73(22):4175-4202 - PubMed
  32. J Neurosci. 1987 Oct;7(10):3131-41 - PubMed
  33. J Neurocytol. 1987 Aug;16(4):523-37 - PubMed
  34. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485-504 - PubMed
  35. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2270-4 - PubMed
  36. J Neurosci. 1993 Jun;13(6):2509-14 - PubMed
  37. J Neurosci. 1997 May 1;17(9):3128-35 - PubMed
  38. Nature. 1997 Oct 16;389(6652):725-30 - PubMed

Publication Types

Grant support