Display options
Share it on

Front Microbiol. 2019 Feb 26;10:212. doi: 10.3389/fmicb.2019.00212. eCollection 2019.

Nasal Resistome Development in Infants With Cystic Fibrosis in the First Year of Life.

Frontiers in microbiology

Aurélie Allemann, Julia G Kraemer, Insa Korten, Kathryn Ramsey, Carmen Casaulta, Daniel Wüthrich, Alban Ramette, Andrea Endimiani, Philipp Latzin, Markus Hilty

Affiliations

  1. Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
  2. Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
  3. Institute for Work and Health (IST), University of Lausanne and University of Geneva, Epalinges, Switzerland.
  4. Division of Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland.
  5. Applied Microbiology Research Unit, Department of Biomedicine, University of Basel, Basel, Switzerland.
  6. Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland.

PMID: 30863369 PMCID: PMC6399209 DOI: 10.3389/fmicb.2019.00212

Abstract

Polymicrobial infections of the respiratory tract due to antibiotic resistant bacteria are a great concern in patients with cystic fibrosis (CF). We therefore aimed at establishing a functional metagenomic method to analyze the nasal resistome in infants with CF within the first year of life. We included samples from patients before antibiotic treatment, which allowed obtaining information regarding natural status of the resistome. In total, we analyzed 130 nasal swabs from 26 infants with CF and screened for β-lactams (ampicillin, amoxicillin-clavulanic acid, and cefuroxime) and other classes of antibiotic resistances (tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole). For 69 swabs (53% of total), we found at least one non-susceptible phenotype. Analyses of the inserts recovered from non-susceptible clones by nanopore MinION sequencing revealed a large reservoir of resistance genes including mobile elements within the antibiotic naïve samples. Comparing the data of the resistome with the microbiota composition showed that the bacterial phyla and operational taxonomic units (OTUs) of the microbiota rather than the antibiotic treatment were associated with the majority of non-susceptible phenotypes in the resistome. Future studies will reveal if characterization of the resistome can help in clinical decision-making in patients with CF.

Keywords: antibiotics; beta-lactamases; functional metagenomics; nasal swabs; resistance

References

  1. Genome Res. 2001 Jun;11(6):1095-9 - PubMed
  2. Clin Microbiol Infect. 2004 Sep;10(9):777-84 - PubMed
  3. J Antimicrob Chemother. 2005 Oct;56(4):773-6 - PubMed
  4. J Antimicrob Chemother. 2006 Mar;57(3):450-60 - PubMed
  5. Nucleic Acids Res. 2009 Jan;37(Database issue):D443-7 - PubMed
  6. Eur J Clin Microbiol Infect Dis. 2009 Aug;28(8):989-90 - PubMed
  7. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  8. Science. 2009 Aug 28;325(5944):1128-1131 - PubMed
  9. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76 - PubMed
  10. PLoS One. 2011 Feb 28;6(2):e17035 - PubMed
  11. Nat Rev Microbiol. 2011 Apr;9(4):244-53 - PubMed
  12. J Antimicrob Chemother. 2011 Nov;66(11):2444-7 - PubMed
  13. Nucleic Acids Res. 2012 Jan;40(Database issue):D621-6 - PubMed
  14. Antimicrob Agents Chemother. 2012 Jan;56(1):588-90 - PubMed
  15. J Microbiol Immunol Infect. 2012 Apr;45(2):134-40 - PubMed
  16. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  17. J Antimicrob Chemother. 2012 Nov;67(11):2640-4 - PubMed
  18. PLoS One. 2013 Nov 13;8(11):e78822 - PubMed
  19. J Clin Microbiol. 2014 Feb;52(2):425-37 - PubMed
  20. Virulence. 2014 Apr 1;5(3):443-7 - PubMed
  21. Antimicrob Agents Chemother. 2014 Jul;58(7):3934-41 - PubMed
  22. Nature. 2014 May 29;509(7502):612-6 - PubMed
  23. Am J Respir Crit Care Med. 2014 Aug 1;190(3):298-308 - PubMed
  24. Bioinformatics. 2014 Dec 1;30(23):3399-401 - PubMed
  25. Lancet. 2014 Aug 23;384(9944):703-13 - PubMed
  26. Antimicrob Agents Chemother. 2015 Jan;59(1):650-3 - PubMed
  27. Am J Respir Crit Care Med. 2014 Dec 1;190(11):1283-92 - PubMed
  28. ISME J. 2015 May;9(5):1246-59 - PubMed
  29. Antimicrob Agents Chemother. 2015 Mar;59(3):1696-706 - PubMed
  30. J Allergy Clin Immunol. 2015 Apr;135(4):905-12.e11 - PubMed
  31. Nat Methods. 2015 Aug;12(8):733-5 - PubMed
  32. Am J Respir Crit Care Med. 2016 Mar 1;193(5):504-15 - PubMed
  33. ISME J. 2016 May;10(5):1081-91 - PubMed
  34. Int J Antimicrob Agents. 2016 Feb;47(2):140-5 - PubMed
  35. Lancet Respir Med. 2016 Aug;4(8):627-635 - PubMed
  36. Proc Natl Acad Sci U S A. 2016 May 31;113(22):6236-41 - PubMed
  37. EBioMedicine. 2016 Jul;9:336-345 - PubMed
  38. Sci Rep. 2016 Jun 28;6:28625 - PubMed
  39. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 - PubMed
  40. Nucleic Acids Res. 2017 Jan 4;45(D1):D574-D580 - PubMed
  41. Int J Antimicrob Agents. 2017 Feb;49(2):265-266 - PubMed
  42. Nucleic Acids Res. 2017 May 5;45(8):e61 - PubMed
  43. Microbiome. 2017 Feb 10;5(1):20 - PubMed
  44. Genome Res. 2017 May;27(5):722-736 - PubMed
  45. Nat Rev Microbiol. 2017 Jul;15(7):422-434 - PubMed
  46. Am J Respir Crit Care Med. 2017 Dec 15;196(12):1582-1590 - PubMed
  47. Int J Mol Sci. 2017 Jul 29;18(8):null - PubMed
  48. Thorax. 2018 Jan;73(1):13-20 - PubMed
  49. Eur Respir J. 2017 Nov 9;50(5): - PubMed
  50. Curr Opin Microbiol. 2018 Feb;41:8-14 - PubMed
  51. PLoS Pathog. 2018 Jan 18;14(1):e1006798 - PubMed
  52. Multidiscip Respir Med. 2018 Aug 9;13(Suppl 1):30 - PubMed
  53. Acta Pathol Microbiol Immunol Scand B. 1983 Apr;91(2):129-34 - PubMed
  54. J Bacteriol. 1999 Jan;181(2):618-26 - PubMed

Publication Types