Display options
Share it on

Polymers (Basel). 2018 Aug 27;10(9). doi: 10.3390/polym10090953.

Inhibition of Tumor Growth via Systemic siRNA Delivery Using Reducible Bile Acid-Conjugated Polyethylenimine.

Polymers

Yue Yin, Jung Eun Lee, Nak Won Kim, Jong Han Lee, Su Yeon Lim, E Seul Kim, Ji Won Park, Min Sang Lee, Ji Hoon Jeong

Affiliations

  1. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  2. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  3. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  4. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  5. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  6. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  7. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  8. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].
  9. School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea. [email protected].

PMID: 30960878 PMCID: PMC6403700 DOI: 10.3390/polym10090953

Abstract

RNA interference (RNAi), mediated by small interfering RNA (siRNA), has been considered as a potential therapeutic agent for cancer owing to its ability to suppress target genes in a sequence-specific manner. In this study, a conjugate of the low molecular weight (M

Keywords: deoxycholic acid; disulfide crosslinking; small interfering RNA; stabilized polyplex; systemic gene therapy

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. J Control Release. 2000 Mar 1;65(1-2):271-84 - PubMed
  2. Expert Opin Pharmacother. 2005 Aug;6(10):1701-11 - PubMed
  3. Cancer Gene Ther. 2006 Sep;13(9):819-29 - PubMed
  4. J Control Release. 2008 Jul 14;129(2):107-16 - PubMed
  5. J Control Release. 2008 Oct 6;131(1):70-6 - PubMed
  6. Cell. 2009 Feb 20;136(4):763-76 - PubMed
  7. Mol Pharm. 2009 May-Jun;6(3):686-95 - PubMed
  8. Nat Mater. 2010 Mar;9(3):272-8 - PubMed
  9. Nature. 2010 Apr 15;464(7291):1067-70 - PubMed
  10. Biomaterials. 2011 Jul;32(21):4914-24 - PubMed
  11. Gene Ther. 2011 Dec;18(12):1127-33 - PubMed
  12. Macromol Biosci. 2011 Sep 9;11(9):1169-74 - PubMed
  13. Eur J Pharm Biopharm. 2012 May;81(1):14-23 - PubMed
  14. Int J Pharm. 2012 Sep 15;434(1-2):488-93 - PubMed
  15. J Control Release. 2013 Jun 10;168(2):125-34 - PubMed
  16. Biomacromolecules. 2013 Jun 10;14(6):1826-37 - PubMed
  17. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11194-206 - PubMed
  18. Int J Nanomedicine. 2013;8:3689-701 - PubMed
  19. Biomaterials. 2014 Feb;35(5):1744-54 - PubMed
  20. Biomaterials. 2014 Aug;35(26):7562-73 - PubMed
  21. J Nanosci Nanotechnol. 2014 Oct;14(10):7388-94 - PubMed
  22. Redox Biol. 2015 Dec;6:183-197 - PubMed
  23. J Control Release. 2015 Nov 10;217:315-26 - PubMed
  24. Annu Rev Chem Biomol Eng. 2016 Jun 7;7:197-222 - PubMed
  25. Macromol Biosci. 2016 Nov;16(11):1583-1597 - PubMed
  26. Mol Ther. 2017 Jul 5;25(7):1491-1500 - PubMed
  27. J Cell Biochem. 2018 Feb;119(2):1767-1779 - PubMed
  28. Hum Gene Ther. 1997 Jan 1;8(1):37-44 - PubMed

Publication Types