Display options
Share it on

NPJ Parkinsons Dis. 2019 Apr 05;5:5. doi: 10.1038/s41531-019-0078-4. eCollection 2019.

Modeling Parkinson's disease in midbrain-like organoids.

NPJ Parkinson's disease

Lisa M Smits, Lydia Reinhardt, Peter Reinhardt, Michael Glatza, Anna S Monzel, Nancy Stanslowsky, Marcelo D Rosato-Siri, Alessandra Zanon, Paul M Antony, Jessica Bellmann, Sarah M Nicklas, Kathrin Hemmer, Xiaobing Qing, Emanuel Berger, Norman Kalmbach, Marc Ehrlich, Silvia Bolognin, Andrew A Hicks, Florian Wegner, Jared L Sterneckert, Jens C Schwamborn

Affiliations

  1. 1Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux, Luxembourg.
  2. 2DFG-Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.
  3. 3Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
  4. 6Present Address: Neuroscience Discovery - Biology Department, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany.
  5. 4Department of Neurology, Hannover Medical School, Hannover, Germany.
  6. Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.

PMID: 30963107 PMCID: PMC6450999 DOI: 10.1038/s41531-019-0078-4

Abstract

Modeling Parkinson's disease (PD) using advanced experimental in vitro models is a powerful tool to study disease mechanisms and to elucidate unexplored aspects of this neurodegenerative disorder. Here, we demonstrate that three-dimensional (3D) differentiation of expandable midbrain floor plate neural progenitor cells (mfNPCs) leads to organoids that resemble key features of the human midbrain. These organoids are composed of midbrain dopaminergic neurons (mDANs), which produce and secrete dopamine. Midbrain-specific organoids derived from PD patients carrying the

Conflict of interest statement

The authors declare no competing interests.

References

  1. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15921-6 - PubMed
  2. Nature. 2011 Nov 06;480(7378):547-51 - PubMed
  3. Cell Rep. 2012 Jun 28;1(6):703-14 - PubMed
  4. Cell Stem Cell. 2013 Mar 7;12(3):354-67 - PubMed
  5. PLoS One. 2013;8(3):e59252 - PubMed
  6. Brain. 2013 Aug;136(Pt 8):2419-31 - PubMed
  7. Nature. 2013 Sep 19;501(7467):373-9 - PubMed
  8. Stem Cells Dev. 2014 Jul 1;23(13):1535-47 - PubMed
  9. Stem Cell Reports. 2014 Mar 06;2(3):337-50 - PubMed
  10. Cell Stem Cell. 2014 Nov 6;15(5):653-65 - PubMed
  11. Cell Rep. 2015 Feb 3;10(4):537-50 - PubMed
  12. Cell. 2016 May 19;165(5):1238-1254 - PubMed
  13. Cell Stem Cell. 2016 Aug 4;19(2):248-257 - PubMed
  14. J Neurosci. 2016 Nov 23;36(47):12027-12043 - PubMed
  15. Stem Cell Reports. 2017 May 9;8(5):1144-1154 - PubMed
  16. J Biomed Sci. 2017 Aug 20;24(1):59 - PubMed
  17. Stem Cell Res. 2017 Oct;24:44-50 - PubMed
  18. Nat Protoc. 2017 Sep;12(9):1962-1979 - PubMed
  19. Nat Rev Neurosci. 2017 Oct;18(10):573-584 - PubMed
  20. Exp Neurol. 2017 Dec;298(Pt B):148-161 - PubMed
  21. Adv Sci (Weinh). 2018 Nov 20;6(1):1800927 - PubMed
  22. J Neurol Sci. 1973 Dec;20(4):415-55 - PubMed

Publication Types