Display options
Share it on

Front Cell Dev Biol. 2019 Mar 22;7:42. doi: 10.3389/fcell.2019.00042. eCollection 2019.

Fatty Acid Oxidation Promotes Cardiomyocyte Proliferation Rate but Does Not Change Cardiomyocyte Number in Infant Mice.

Frontiers in cell and developmental biology

Tongtong Cao, Daniela Liccardo, Ryan LaCanna, Xiaoying Zhang, Rong Lu, Brian N Finck, Tani Leigh, Xiongwen Chen, Konstantinos Drosatos, Ying Tian

Affiliations

  1. Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
  2. Department of Pathology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  3. Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
  4. Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.

PMID: 30968022 PMCID: PMC6440456 DOI: 10.3389/fcell.2019.00042

Abstract

Cardiomyocyte proliferation accounts for the increase of cardiac muscle during fetal mammalian heart development. Shortly after birth, cardiomyocyte transits from hyperplasia to hypertrophic growth. Here, we have investigated the role of fatty acid β-oxidation in cardiomyocyte proliferation and hypertrophic growth during early postnatal life in mice. A transient wave of increased cell cycle activity of cardiomyocyte was observed between postnatal day 3 and 5, that proceeded as cardiomyocyte hypertrophic growth and maturation. Assessment of cardiomyocyte metabolism in neonatal mouse heart revealed a myocardial metabolic shift from glycolysis to fatty acid β-oxidation that coincided with the burst of cardiomyocyte cell cycle reactivation and hypertrophic growth. Inhibition of fatty acid β-oxidation metabolism in infant mouse heart delayed cardiomyocyte cell cycle exit, hypertrophic growth and maturation. By contrast, pharmacologic and genetic activation of PPARα, a major regulator of cardiac fatty acid metabolism, induced fatty acid β-oxidation and initially promoted cardiomyocyte proliferation rate in infant mice. As the cell cycle proceeded, activation of PPARα-mediated fatty acid β-oxidation promoted cardiomyocytes hypertrophic growth and maturation, which led to cell cycle exit. As a consequence, activation of PPARα-mediated fatty acid β-oxidation did not alter the total number of cardiomyocytes in infant mice. These findings indicate a unique role of fatty acid β-oxidation in regulating cardiomyocyte proliferation and hypertrophic growth in infant mice.

Keywords: cardiomyocyte; fatty acid oxidation; hypertrophic growth; infant mice; proliferation

References

  1. J Clin Invest. 1999 Jun;103(11):1489-98 - PubMed
  2. Am J Physiol Heart Circ Physiol. 2000 Jul;279(1):H429-36 - PubMed
  3. Mol Cell Biochem. 2000 Jul;210(1-2):47-52 - PubMed
  4. J Clin Invest. 2002 Jan;109(1):121-30 - PubMed
  5. Biochem Biophys Res Commun. 2006 Oct 6;348(4):1472-8 - PubMed
  6. Science. 2006 Sep 29;313(5795):1922-7 - PubMed
  7. Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl 1:S60-7 - PubMed
  8. Circ Res. 2007 Mar 2;100(4):536-44 - PubMed
  9. Physiol Rev. 2007 Apr;87(2):521-44 - PubMed
  10. Am J Physiol. 1991 Dec;261(6 Pt 2):H1698-705 - PubMed
  11. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16886-91 - PubMed
  12. Genes Dev. 2008 Jul 15;22(14):1948-61 - PubMed
  13. Pediatr Cardiol. 2009 Jul;30(5):651-8 - PubMed
  14. Lab Anim. 2009 Apr;43(2):127-37 - PubMed
  15. Exp Physiol. 2010 Jan;95(1):131-9 - PubMed
  16. J Mol Cell Cardiol. 2010 Apr;48(4):725-34 - PubMed
  17. Cardiovasc Res. 2010 Jun 1;86(3):365-73 - PubMed
  18. J Cell Biol. 2010 Feb 22;188(4):473-9 - PubMed
  19. J Cardiovasc Pharmacol. 2010 Aug;56(2):130-40 - PubMed
  20. Nat Rev Mol Cell Biol. 2010 Oct;11(10):715-27 - PubMed
  21. Mol Cell. 2011 May 20;42(4):426-37 - PubMed
  22. J Cell Biol. 1990 Dec;111(6 Pt 1):2427-36 - PubMed
  23. Cell Mol Life Sci. 2013 Apr;70(7):1221-39 - PubMed
  24. Dev Growth Differ. 2012 Oct;54(8):731-8 - PubMed
  25. Am J Physiol. 1990 May;258(5 Pt 2):H1274-80 - PubMed
  26. Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7318-23 - PubMed
  27. Rev Physiol Biochem Pharmacol. 2013;165:67-96 - PubMed
  28. Curr Opin Cell Biol. 2013 Dec;25(6):724-9 - PubMed
  29. Nat Immunol. 2013 Oct;14(10):1064-72 - PubMed
  30. Drug Discov Today. 2014 May;19(5):602-9 - PubMed
  31. Cell. 2014 Apr 24;157(3):565-79 - PubMed
  32. Cell Death Dis. 2014 Jul 17;5:e1337 - PubMed
  33. Sci Transl Med. 2015 Mar 18;7(279):279ra38 - PubMed
  34. Circ Res. 2016 Jan 8;118(1):20-8 - PubMed
  35. J Clin Invest. 2016 Jun 1;126(6):2031-9 - PubMed
  36. Dev Cell. 2016 Nov 21;39(4):491-507 - PubMed
  37. Mol Cell. 2017 Jan 19;65(2):285-295 - PubMed
  38. Circ Res. 1988 Dec;63(6):1036-43 - PubMed
  39. FASEB J. 1994 Jan;8(1):54-61 - PubMed
  40. J Mol Cell Cardiol. 1996 Aug;28(8):1737-46 - PubMed
  41. Am J Physiol. 1996 Nov;271(5 Pt 2):H2183-9 - PubMed
  42. J Mol Cell Cardiol. 1997 Jun;29(6):1541-51 - PubMed
  43. J Mol Cell Cardiol. 1997 Jun;29(6):1553-65 - PubMed
  44. Mol Cell Biochem. 1998 Nov;188(1-2):49-56 - PubMed

Publication Types

Grant support